

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

 A Sample Security Assurance Case Pattern

E. Kenneth Hong Fong, Project Leader
David A. Wheeler

December 2018

Approved for public
release; distribution is

unlimited.

IDA Paper
P-9278

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA) under contract
HQ0034-14-D-0001, Task AU-5-3856, “Enhancing Program Protection Through Effective
Systems Assurance,” for OUSD(R&E) Enterprise Engineering. The views, opinions, and
findings should not be construed as representing the official position of either the
Department of Defense or the sponsoring organization.
Acknowledgments
My thanks to Reginald N. Meeson, Jr. (for providing important feedback on the
content), Ken Hong Fong (for providing important feedback on scope and the need
for connections with other materials), Bob Martin (for useful early feedback about
prioritizing CWEs), Carol Woody (for identifying some valuable supporting
information about assurance cases), the Linux Foundation (for supporting and
releasing the software and sample assurance case used here as a starting point),
and Tom Hurt (for supporting this work).

For more information:
E. Kenneth Hong Fong, Project Leader
ehongfon@ida.org, 703-578-2753
Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice
© 2018 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:mmyers@ida.org

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-9278

A Sample Security Assurance Case Pattern

E. Kenneth Hong Fong, Project Leader

David A. Wheeler

i

Executive Summary

Essentially, all systems with software should address security. However, there is no
single “magic bullet” that makes software secure, because security is an emergent property
of a system. Developing secure software requires consideration of security across its life
cycle. In particular, security must be engineered in, not “bolted on” later. A related term is
software assurance (SwA), which can be defined as “the level of confidence that software
is free from vulnerabilities, either intentionally designed into the software or accidentally
inserted at any time during its life cycle, and that the software functions in the intended
manner” [CNSS 4009]. Unfortunately, considering security throughout the life cycle can
be challenging, and the term “software assurance” is an objective—it does not prescribe
any one technique. Tracking and managing the application of the various techniques across
the software corpus and throughout the software life cycle can be overwhelming.

An assurance case is a widely recommended practical alternative to other approaches
for managing the assurance activities (as opposed to an overwhelming list or other
unstructured methods for recording what was done or not done). An assurance case
“includes a top-level claim for a property of a system or product (or set of claims),
systematic argumentation regarding this claim, and the evidence and explicit assumptions
that underlie this argumentation” [ISO 15026-2:2011]. Because an assurance case is
systematic, it is much easier for people to determine if important areas have been
adequately covered and to understand the ramifications of different decisions. In this
document, we focus on creating and using an assurance case to validate security properties
(a “security assurance case”). The idea of a security assurance case is simple, but many
have found it difficult to create a security assurance case because of the limited number of
sample patterns and worked examples.

This document provides a sample security assurance case pattern, based on a publicly
available assurance case of a real commercial system [Wheeler 2018a]. This document also
shows how this pattern can be applied to a real system. We hope that many system/software
developers and approving authorities will find this sample pattern and application to be a
useful place to start when developing their own assurance cases. This document also
discusses changes that could be made to deal with different kinds of applications, such as
Internet of Things (IoT) or weapon systems. The sample security assurance case pattern
provided here is for a system that only requires moderate assurance; higher levels of
assurance would call for more rigor. This pattern can make it much easier to create a
security assurance case.

ii

Contents

1. Introduction ... 1-1
2. Sample Assurance Case Pattern .. 2-1

A. Top Level .. 2-1
B. Life Cycle Processes ... 2-4

1. Security in Design ... 2-5
2. Security in Integration and Verification .. 2-9
3. Security in Transition and Operation .. 2-9
4. Security in Maintenance .. 2-10
5. Certifications and Controls .. 2-10

C. Implementation .. 2-11
1. Common Implementation Errors Countered ... 2-13
2. Common Misconfigurations Countered .. 2-15
3. Hardening Applied .. 2-15
4. Securely Reuse Software ... 2-16

D. Other Life Cycle Processes ... 2-17
E. Real Assurance Cases Include Supporting Text .. 2-18
F. Determining Adequacy .. 2-19

3. Sample Assurance Case Application ... 3-1
A. Top Level .. 3-1

1. Sample Supporting Text: Email Addresses ... 3-3
2. Sample Supporting Text: Data Modification Requires Authorization. 3-5
3. Sample Graphical Representation That Data Modification Requires

Authorization ... 3-6
B. Life Cycle Processes ... 3-7
C. Implementation .. 3-9
D. Other Life Cycle Processes ... 3-11

4. Conclusions ... 4-1
Appendix A . Processes Are Neither Phases nor Stages ... A-1
Appendix B . How an Assurance Case can Support Other Documents and Processes ...B-1

1. DoD Instruction 5000.02 ...B-1
2. DoD Program Protection Plan (PPP) ...B-2
3. DoD Cybersecurity Strategy ...B-3
4. DoD Instruction 5200.44 ...B-4
5. NIST Cybersecurity Risk Management Framework (RMF) / DoDI 8510.01 .B-5
6. NIST SP 800-160 volume 1 ..B-6
7. ISO/IEC/IEEE 12207 ..B-7

iii

Appendix C . Trusted Systems and Networks (TSN) AnalysisC-1

References ..R-1
Acronyms and Abbreviations .. AA-1

Figures and Tables
Figure 1. Top Level of an Assurance Case .. 2-2
Figure 2. Life Cycle Processes... 2-5
Figure 3. Implementation—Web Application ... 2-12
Figure 4. Implementation—Embedded System ... 2-13
Figure 5. Other Life Cycle Processes .. 2-17
Figure 6. Supporting Text Provides Important Details .. 2-19
Figure 7. Application: Top Level of Assurance Case .. 3-2
Figure 8. Graphical Representation That Data Modification Requires Authorization 3-7
Figure 9. Application: Life Cycle Processes.. 3-8
Figure 10. Application: Implementation .. 3-10
Figure 11. Application: Other Life Cycle Processes ... 3-11
Figure 12. Phases vs. Processes .. A-2
Figure 13. Systems Security Engineering Framework of NIST SP 800-160B-7
Figure 14. TSN Analysis Methodology [DoD DAG, chapter 9]C-2

Table 1. Weakness Classes from the Center for Assured Software 2-15

1-1

1. Introduction

Essentially, all systems with software should address security. However, there is no
single “magic bullet” that makes software secure, because security is an emergent property.
Instead, developing secure software requires consideration of security across its life cycle.
As Department of Defense (DoD) Instruction 5000.02 states, “Cybersecurity is a
requirement for all DoD programs and must be fully considered and implemented in all
aspects of acquisition programs across the life cycle.” [DoDI 5000.02] In short, security
must be engineered in, not “bolted on” later. A related term is software assurance (SwA),
which can be defined as “the level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally inserted at any time during
its life cycle, and that the software functions in the intended manner” [CNSS 4009].

However, addressing security throughout the life cycle can be challenging. A simple
checklist fails to show the interrelationships of issues and easily becomes an overwhelming
list that is impractical to prioritize. A simple list also does not assure that all aspects are
adequately covered. The term software assurance describes an objective, but it is not
prescriptive—how can someone counter vulnerabilities with some level of confidence?

An underlying reason that security assurance is difficult (in comparison with many
other requirements) is that security properties, like safety properties, are generally
emergent and negative properties:

• An emergent property is not implemented in any one component but instead
arises from the totality of the system components, their interactions, and the
system environment. As a result, security cannot be constrained to any one
system component or any one stage of the life cycle.

• A negative property is a property that asserts the system “never does
something.” This means that simple testing is inadequate; merely showing that
the system doesn’t do something in one situation typically does not provide
enough evidence to justify that a system will never do something.

An assurance case is a practical alternative to an overwhelming list or other
unstructured methods for recording what was done or not done in a way that can lead to
greater confidence in the result. An assurance case “includes a top-level claim for a
property of a system or product (or set of claims), systematic argumentation regarding this
claim, and the evidence and explicit assumptions that underlie this argumentation. Arguing
through multiple levels of subordinate claims, this structured argumentation connects the

1-2

top-level claim to the evidence and assumptions.” [ISO 15026-2:2011]. Because an
assurance case is systematic, it is much easier for people to determine if important areas
are adequately covered, and to understand the ramifications of different decisions. An
assurance case can be used to justify any important property; historically, they were
developed to validate safety properties (a “safety assurance case”), but in this document
we focus on using an assurance case to validate security properties (a “security assurance
case”). A security assurance case provides a clear and systematic view of why the system,
as a whole, is adequately secure.

Many documents have stressed the value of creating an assurance case.1 The National
Defense Industrial Association (NDIA) document Engineering for System Assurance
identified the assurance case as a key concept, stating that, “the purpose of an assurance
case is to provide convincing justification to stakeholders that critical system assurance
requirements are met in the system’s expected environment(s)” [NDIA 2008]. The
National Institute of Standards and Technology (NIST) also stresses their use [NIST SP
800-160]. The International Organization for Standardization (ISO) has developed a
standard for assurance cases: ISO 15026. The Object Management Group (OMG) has
developed the Structured Assurance Case Metamodel (SACM) to allow the “interchange
of structured arguments [assurance cases] between diverse tools by different vendors.”
[OMG 2018] Also, The Open Group has developed a standard around use of the OMG
SACM assurance case “for dependably architecting a system that has required
characteristics.” [Open Group 2013]. There are also several very helpful documents that
provide guidance on how to create security assurance cases, including [Rhodes 2010],
[Lipson 2014], and [Goodenough 2014].

The idea of an assurance case is simple, but many have found it difficult to create an
assurance case because there are few public examples or patterns to follow. Many real
security assurance cases are considered highly confidential, so publicly available worked
examples are rare. One of the few public examples available is [Blanchette 2009a]
[Blanchette 2009b], which is based on an unnamed defense system. However, although
that paper is extremely instructive, it presents an assurance case that is very specific to a
single system. [Goodenough 2014] is another valuable document, and it provides some
high-level patterns, but it only provides a few fragments and relatively little detail on a
specific pattern that could be followed.

This document provides a sample security assurance case pattern, based on a publicly
available assurance case of a real commercial system [Wheeler 2018a]. This document also
shows how this pattern can be applied to a real system. A video summarizing an earlier
version of the assurance case is also available [Wheeler 2017]. We hope that many

1 For brevity, in this document we will often use the term “assurance case” to mean “security assurance

case”; we will occasionally use the full term to remind the reader of our focus.

1-3

system/software developers and approving authorities will find this sample pattern to be a
useful place to start when developing their own assurance cases.

It is important to understand that having an assurance case document does not
guarantee that a system is adequately secure. An assurance case is simply a way to organize
information so it can be effectively communicated among stakeholders. Stakeholders may
disagree on whether or not a given assurance case is adequate. That said, an assurance case
enables all parties to focus on the issues (to determine what is being proposed) instead of
being lost in unorganized details.

The sample assurance case pattern shown in this document is based on one for a web
application; the text below discusses changes that could be made to deal with other kinds
of applications, such as Internet of Things (IoT) or weapon systems. The sample assurance
case shown here is for a system that only required moderate assurance; higher levels of
assurance would call for more rigor. That said, we believe it will be easier to create another
assurance case after seeing one that is worked out.

Chapter 2 presents the sample security assurance case pattern. Chapter 3 shows how
this pattern is applied in a real commercial system. In actuality, the pattern shown in
Chapter 2 was derived from the material shown in Chapter 3; they are shown in this order
to make it easier to understand the pattern. We end the main body with conclusions.
Appendix A discusses an important point that the sample assurance case depends on, but
may not be understood by all: processes are neither phases nor stages. Security assurance
cases are typically a tool that is not directly required; Appendix B discusses how an
assurance case can support other documents and processes, including some specific
examples for certain documents and processes.

2-1

2. Sample Assurance Case Pattern

The following figures present the high-level view of a simple assurance case pattern
that focuses on security (aka a “security assurance case”). We expect that those who use
this pattern will modify it as necessary to fit their system.

These figures are in Claims, Arguments and Evidence (CAE) notation, which is a
simple notation often used for assurance cases. Ovals are claims or sub-claims, whereas
rounded rectangles are the supporting arguments justifying the claims. Evidence is shown
in rectangles. A common alternative to CAE is Goal Structuring Notation (GSN), but GSN
is a more complex notation; for our simple example, we have intentionally chosen a simple
notation.

There are tools that can help develop and maintain an assurance case (e.g., Adelard’s
Assurance and Safety Case Environment (ACSE)). Tools can be useful, but their effective
use requires that users understand assurance cases and how they want to structure the
assurance case for their system. In addition, users cannot properly evaluate a tool’s
effectiveness until the users understand what the tool is trying to help them accomplish. In
this paper, we focus on the basics; once those are understood, tools can be useful.

Here are a few general principles that we believe are important when developing and
updating an assurance case:

1. Where possible, it should be obvious that “all important cases are covered.”

2. Where practical, apply the DRY principle (“don’t repeat yourself”). In
particular, an argument should be justified only once and then reused elsewhere.

3. An assurance case should be designed to be easy to maintain. For example,
where possible, use URLs or searchable names to point to evidence (instead of
embedding it within a document) to reduce the need for unnecessary updates.2

A. Top Level
We have decided that the system must meet a single overall claim, that the “system is

adequately secure against moderate threats.” This is shown as a claim in the top level
diagram of Figure 1.

2 See [Woody 2018] for a discussion on how to gather some evidence to support an assurance case in an

automated way, including using machine learning and text analytics based tools.

2-2

Figure 1. Top Level of an Assurance Case

We must find a way to argue that this top level claim is true. For our purposes, we
have decided to divide this into two sub-claims:

1. Security requirements are identified and met by functionality. If we don’t know
what security requirements must be met, we cannot determine if the system
meets them.

a. This requires knowing the system’s basic security requirements
(confidentiality, integrity, and availability). Some systems might consider
additional requirements as basic, such as non-repudiation and/or
accountability.

b. These basic security requirements must have adequate support by access
control functions (identification, authentication, and authorization).

c. Understanding the security requirements also requires identifying and
addressing the assets the system must protect and the threat actors the
system must defend against. If the system must directly withstand nation-
state attacks, then much more will need to be done in comparison with a
system that does not. If the system must withstand insider threats during
development and/or operations, then that must also be identified and
addressed.

Assets &
threat actors
identified &
addressed

System is adequately
secure against moderate

threats

Confidentiality Integrity Availability

Security implemented in
all software

development processes

Security requirements
identified and met by

functionality
Security implemented by

software life cycle processes

See figure 2

Access
control

Identifi-
cation

Authenti-
cation

Authori-
zation

2-3

We then decompose each requirement into arguments to justify the claim
that the requirement is met, and those arguments should eventually be
supported by evidence (typically from the system design, implementation,
and verification).

2. Security is implemented by software life cycle processes (that is, the processes
that occur within the software life cycle). Unfortunately, failures in security can
occur in any software life cycle processes, so we must harden them all to
provide adequate security.

The detailed security requirements supporting the top-level figure would be specific
to a particular system. For example, most systems will need to keep some information
confidential, but they will differ on the information that must be held confidential, which
threat actors the information must be kept from, and how the access control will be
managed to determine when receiving information is authorized. Chapter 3 shows an
example of how this top-level pattern can be applied, including examples of specific
requirements.

That said, some requirements apply to many systems. For example, systems that
authenticate users using passwords should in almost all cases store passwords as iterated
per-user salted hash algorithms (such as bcrypt); this is widely considered to be a minimum
standard today. Multiple backups are wise to have when practical. In general, ensure that
only authorized developers can make changes to the software, and use version control
software to record every change, who made the change, and when the change was made.
In many cases, both data in motion and data at rest should be encrypted.

This is not the only way to organize requirements, of course. For example, [Blanchette
2009a] is organized by system Key Performance Parameters (KPPs). The point is to
identify the important requirements that will be part of the assurance case.

Each requirement is then decomposed through arguments and evidence to show that
it is met and adequately assured (often by reference to evidence produced by the design,
implementation, and verification processes). This could be done without any separate
reference to processes in the life cycle. However, in practice, many of the detailed
requirements will depend on common arguments or assumptions. We avoid repeating the
same arguments across multiple requirements (i.e., “keep the assurance case DRY”) by
supplementing a structure based on requirements with a structure based on life cycle
processes. For example, to have a secure system, it is vital that (1) security principles be
applied to the design and (2) common kinds of vulnerabilities are countered in the
implementation. It is much clearer and easier to maintain the assurance case if these two
points are covered once instead of repeating them for every requirement.

2-4

B. Life Cycle Processes
Figure 2 shows a set of arguments to justify the claim that security is implemented in

the software life cycle processes as defined by the ISO/IEC/IEEE 12207 standard [ISO
12207:2017]. These are the processes that occur within a life cycle, not the phases or stages
of a life cycle as discussed in Appendix A. Figure 2 focuses on the software life cycle
technical processes, as we cannot easily show all processes in one figure. Figure 3 and
Figure 4 will present the implementation process details, and Figure 5 will present the life
cycle processes other than the technical processes.

For simplicity, in a few cases, we have merged multiple ISO/IEC/IEEE 12207
processes into a single process. What we term “requirements process” merges three related
processes in ISO/IEC/IEEE 12207 (business or mission analysis, stakeholder needs and
requirements definition, and systems/software requirements definition). What we term
“design process” also merges three related processes in ISO/IEC/IEEE 12207 (architecture
definition process, design definition process, and system analysis process). For each
process in the assurance case, we name an argument “Security in <process name>”; this
means that we argue that we address security issues as part of that process, and the totality
of these arguments justify the claim they support.

We have already covered requirements, so we will now show how security is
addressed in design, implementation (by reference), integration and verification, transition
and operations, and maintenance. The “transition” process is often called “deployment.”

2-5

Figure 2. Life Cycle Processes

1. Security in Design
A secure system requires a secure design. The following subsections discuss some

approaches for doing so.

a. Threat (Attack) Model Analyzed
It is wise to analyze the system design from the point-of-view of an attacker. This

kind of analysis is called “threat modeling” or “attack modeling.” Such analysis can

Memory
-safe
lang-
uages

Security implemented by
software life cycle processes

Security
in design

Secure design
principles applied,
including all S&S

Availability
through scalability

Security in
integration &
verification

Security in
maintenance

Security in
transition &
operation

Auto-detect
vulnerabilities
when they are

publicly reported

Style
checking

tools
Source
code

weakness
analyzer

Automated
testing,

high
coverage

FLOSS

Certifications
& controls

Security in
requirements

See figure 1

Detect Exter-
nal

(monit
oring)

Recovery
plan incl.
backups

Internal
(logging/
anomaly

detection)Online
checkers

Economy
of mecha-

nism
(simple
design)

Complete
mediation

Fail-safe
defaults

Open design
Separation
of privilege

Least
common

mechanism

Least
privilege

Psychological
acceptability

Limited attack
surface

Input validation
with whitelists

See figures 3 and 4

Deploy-
ment

provider

Threat
(attack)
model

analyzed

Negative
testing

Security implemented
by software life cycle
technical processes

Security
implemented by
other life cycle

processes

Rapid update

Security in
implementation

Threat
(attack)
model

analyzed

TSN
analysis

2-6

primarily focus on one of three different aspects, though many real analyses have a little of
the other aspects as well:

1. Attacker-centric. This approach starts with the attackers: evaluating their goals
and how they might achieve them. The attack tree approach described in [Moore
2001] is an example. The Common Attack Pattern Enumeration and
Classification (CAPEC)3 effort provides a catalog of common attack patterns
that can be very useful. This approach is very useful for security experts, but
those new to security may struggle to apply an attacker-centric analysis, because
they have trouble viewing the world from an attacker’s point of view.

2. Asset-centric. This approach starts with the key assets entrusted to a system and
works to show that they are adequately protected. This is a rational approach,
but those new to security may struggle to correctly determine exactly what
assets most need protecting and how to do it.

3. Design-centric. This approach starts with the system design: examining each
major element and their interconnections to identify types of attacks against
each element and countermeasures that can be employed. Microsoft’s Security
Development Lifecycle uses this approach. Those new to security may prefer to
use this approach, because they will already be familiar with system design.

It is also possible to apply a cyber table top (CTT) exercise; see the verification
section for further discussion about CTTs.

b. Trusted Systems and Networks (TSN) Analysis
Trusted Systems and Networks (TSN) analysis is a rigorous approach to identifying

addressing and countering risks, including those from malicious components, as presented
in the Defense Acquisition Guidebook (DAG) [DoD DAG] in support of [DoDI 5200.44].
This approach can be especially valuable for critical systems. Since this approach
especially impacts design, we have placed this analysis within the design process of this
assurance case pattern. TSN analysis includes criticality analysis (CA), which identifies
mission critical functions and critical components. It also includes vulnerability
assessment, risk assessment, and protection measure selection. A brief summary of the
approach is in Appendix C.

3 The CAPEC catalog is at https://capec.mitre.org

2-7

c. Secure Design Principles Applied
Secure design principles should also be applied, even if just the well-known principles

from Saltzer and Schroeder (S&S). For more about the S&S principles, see [Saltzer 1975].
Here is a brief list and description:4

• Economy of mechanism, aka “Simple design”: Keep the design as simple and
small as practical (e.g., by adopting sweeping simplifications where practical).
Complex designs can easily hide defects, including defects that are
vulnerabilities.

• Fail-safe defaults: Implement access decisions so they deny by default.

• Complete mediation: Check every access that might be limited to ensure the
request is authorized and non-bypassable.

• Open design: Design security mechanisms so that they do not depend on the
attacker’s ignorance of their design but instead depend on more easily protected
and changed information such as keys and passwords.

• Separation of privilege: Prefer to use multi-factor authentication, such as
requiring both a password and a hardware token, because it is stronger than
single-factor authentication.

• Least privilege: Operate processes with the least privilege necessary. This
includes minimizing the privileges granted, minimizing the time such privileges
are granted, and minimizing the size of the component that has elevated
privileges.

• Least common mechanism: Minimize the mechanisms shared (held in common)
by more than one user or process. Shared mechanisms such as memory,
directories, databases, operating system kernels, and even CPUs should be
reviewed carefully to reduce the risk that the shared mechanism will become a
security weakness. Sometimes sharing is necessary or prudent, of course; the
goal is to weigh the risks and benefits.

• Psychological acceptability: Design the human interface for ease of use;
designing for “least astonishment” can help.

We have supplemented the S&S principles with two more: having a limited attack
surface and using input validation with whitelists:

4 The terminology used in the 1975 text is dated; we have reworded the principles here for clarity.

2-8

• Limited attack surface: Minimize the interfaces where an attacker has an attack
opportunity. Minimize the Internet ports that are accessible, the URL paths that
are accepted, etc.

• Input validation with whitelists: Validate inputs from untrusted sources5 using a
whitelist and not a blacklist. A whitelist is a rule that defines what is legal, as
strictly as practical; anything that is not legal should be immediately rejected.
For example, input validation for a particular field may require that it have
exactly four decimal digits—anything else would then be unacceptable. This is
fundamentally different from a blacklist (a rule that defines what is illegal).
Clever attackers can often develop another pattern that should be illegal, so
security should normally not depend on the use of blacklists. Blacklists can still
be useful as a way to create test cases.

A different (though related) set of security principles can be found in an appendix of
[NIST SP 800-160]; the point is to identify and consider a set of security principles.

d. Availability through Scalability
It is best when a system is designed for scalability—that is, when it can easily and

quickly be scaled up to handle much larger transaction volumes. This provides some quick
defenses against denial of service (DoS) attacks. This is much easier to achieve if the
system is deployed on a cloud platform. Of course, not all systems can be deployed this
way.

e. Memory-Safe Programming Languages
When practical, it is best to prefer memory-safe programming languages. Most

programming languages are memory-safe because they prevent many mistakes (such as
out-of-bounds array accesses and pointer references) from becoming security
vulnerabilities. It is possible to use memory-unsafe languages instead (e.g., C, C++, and
assembly). However, when developers make mistakes, use of these programming
languages significantly increases the risk of serious security vulnerabilities caused by
ordinary programming mistakes. If a memory-unsafe language is used, then a number of
additional countermeasures will typically be necessary to have a chance of producing an
adequately secure system. This could include using multiple source code weakness
analyzers, aggressive use of warning flags, fuzzing, and address space layout
randomization (ASLR).

5 Inputs from at least untrusted sources must be validated. It might be wise to also validate inputs from

trusted sources, as they may have inadvertent errors; for our purposes, we will not strictly require it.

2-9

2. Security in Integration and Verification
Software must be integrated into a larger system for it to be used. Many software

projects use continuous integration (CI) in which all developer working versions are
merged into a shared mainline several times a day. CI reduces many integration risks
caused by long delays between integration. The CI merge typically also runs a set of
automated verification tasks—and that brings us to verification.

Of course, we must verify the software. Verification includes not only execution
testing, but any verification process that can detect problems or increase our confidence.
There are a large number of different types of tools and techniques that can be used; the
State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and
Evaluation 2016 [Wheeler 2016] provides guidance on how to select types of tools and
techniques.

The pattern shown here provides a few examples of how to provide some verification.
Style-checking tools and source code weakness analyzers can analyze source code to find
defects early (so they can be repaired quickly). Using free/libre/open source software
(FLOSS), as appropriate, makes it possible to review the source code of reused software.
An automated test suite with high coverage is vitally important, as such test suites can
detect failures (including regressions). “High coverage” will vary depending on many
factors; low-assurance systems may only require 80% statement coverage, whereas higher-
assurance systems may require 90% statement coverage and 80% branch coverage or even
higher. In addition, we would expect that high coverage systems would have automated
tests that cover all the key parts of any high-level specification (e.g., there is a test for every
major type of input and transaction). The test suite should include “negative tests” (tests
that should fail) to ensure that important security-related actions that should fail will
actually fail. For example, there should be tests that ensure that unauthenticated users
cannot perform actions that require authentication (where this applies).

Another kind of verification (not shown in Figure 2) is a CTT, an approach used
within the DoD. A CTT is a “lightweight, intellectually intensive exercise that explores the
effects of cyber offensive operations on the capability of US systems to carry out their
missions. It is a wargame-like exercise that focuses on two teams with opposing missions:
the military forces charged with executing an operational mission and the cyber mission
forces attempting to oppose those military forces.” [DoD CTT]. This kind of verification
exercise can be done early in development, even before software is developed.

3. Security in Transition and Operation
Of course, security must be considered during transition (aka deployment) and

operation. Various “online” checkers should be used to detect common misconfigurations
that might occur in the production system. The underlying deployment platform should be
evaluated (where there is one). Perhaps most importantly, although preventing security

2-10

vulnerabilities is very important, we must also detect and recover when prevention fails.
Recovery plans may be simple in some systems (e.g., perhaps you just restore data from
backups), but they typically require pre-planning (e.g., you must make the backups and
store them in a protected way so that subversion of the system will not damage the
backups).

4. Security in Maintenance
Software does not “wear out” in the same sense that physical items do, but security

vulnerabilities are often found in reused components after they have been selected.
Therefore, projects should automatically detect when vulnerabilities are publicly identified
in the software they used and have a process to rapidly update and field those components
as necessary.

There are “origin analysis” or “software composition analysis” tools that can examine
the subcomponents of a system and then perform analysis based on that. In our case, the
key is to determine when a subcomponent has a publicly known vulnerability. In many
cases, publicly known vulnerabilities are assigned an identifier called a Common
Vulnerabilities and Exposures (CVE) identifier; this is then tracked by databases such as
the National Vulnerability Database (NVD). CVEs and the NVD can help alert projects to
publicly known vulnerabilities in their components.

5. Certifications and Controls
Many systems must acquire certifications, accreditations, and the use of a variety of

controls. These can be valuable, because they provide additional reviews from a different
perspectives to ensure that nothing important has been missed. For example, military
systems must often comply with a set of controls from the Risk Management Framework
(RMF) [NIST SP 800-37] [NIST SP 800-53] [NIST SP 800-53A] [DoDI 8510.01], and
these controls (when correctly applied) can help ensure that important actions are
performed. However, they can only provide additional review of a system; if a system is
not designed for security, certification and controls will typically be unable to fully
compensate for that lack.

In some assurance cases, it might make sense to disperse various controls to the parts
of the assurance case in which they logically “make sense,” and then show under
certification the evidence that the system meets the full set of controls it is required to meet.

We now turn to the part of the assurance case that focuses on implementation and the
many possible actions there.

2-11

C. Implementation
Of course, if the software as implemented is not secure, the system it controls is

unlikely to be secure. The following figures show the portion of the assurance case focusing
on the software implementation. Figure 3 shows a pattern for a web application, and Figure
4 shows a pattern for embedded software.

Ideally the software implementation would be rigorously proven using formal
methods (the application of mathematics to software), supplemented with extensive testing
to ensure that the assumptions of the mathematical models were correct. Formal methods
have made many strides and are slowly becoming increasingly practical to apply for
smaller, very high assurance systems. If your system requires the assurance provided by
formal methods, use them and note that in the assurance case. However, the costs of such
approaches exceed the benefits in many cases; what can be done for systems with more
modest assurance requirements?

From a systems engineering approach, the overall goal is to reduce risks to acceptable
levels, which means finding ways to prioritize what is most important. In particular, the
goal should be to reduce the probability and/or impact of various risks.

A good way to handle this problem is to observe that most implementation
vulnerabilities are due to common types of implementations or common misconfigurations.
Thus, if we can identify an appropriate list of implementation errors and common
misconfigurations that are likely to apply to this system, it makes sense to focus on those
issues. In short, we focus on reducing the highest-risk areas: the kinds of implementation
defects most likely to lead to vulnerabilities. No list of common implementation errors and
misconfigurations can cover everything, but by also adding hardening (measures that
reduce/eliminate the security impact of defects), we reduce the probability or impact of a
vulnerability even if those other measures fail. In addition, we need to securely reuse
components.

Different kinds of applications are different at the implementation level. For example,
web applications are significantly different from embedded software such as those in IoT
devices and weapon systems. In particular, embedded systems are typically resource-
constrained and timing-dependent, leading to the use of memory-unsafe languages (such
as C and C++) or languages where memory safety mechanisms are intentionally disabled
in some cases (e.g., unsafe Rust or Ada pragmas that suppress run-time checks). The use
of unsafe mechanisms should be limited where practical, but this is not always practical
(especially for pre-existing systems). Memory-unsafe languages create additional risks, so
additional measures should be taken when using them to manage their risks.

2-12

Figure 3. Implementation—Web Application

All
OWASP
top 10
(2013 &
2017)

countered

Entire most-
relevant security

guide applied

Hardening
applied

Hardened
outugoing HTTP

headers, including
restrictive CSP

Incoming
rate
limits

Force
HTTPS,
including
via HSTS

CSRF
token

harden-
ing

Outgoing
email

rate limit

1. Injection (incl.
SQL injection)

2. Auth &
session

3. XSS

4. Insecure
object references

5. Security
misconfiguration

6. Sensitive data
exposure

7. Missing
access control

8. CSRF

9. Known
vulnerabilities

10. Unvali-
dated

redirect/fwd

See securely reuse
(supply chain)

See security guide applied

Most implementation
vulnerabilities are due to

common types of
implementation errors or

common misconfigurations,
so countering them greatly

reduces security risks

Reduce/eliminate
impact if defect exists

All of the most
common important

implementation
vulnerability types

(weaknesses)
countered

All of the most common
known security-relevant
misconfiguration errors

countered

11. XXE (2017 A4)

12. Insecure
deserialization

(2017 A8)

13. Insufficient
logging and

,onitoring (2017
A10)

Encrypted
email

addresses

Cookie
limits

Securely
reuse

Review before use

Get authentic
version

Use package
manager

Security in
implementation

2-13

Figure 4. Implementation—Embedded System

1. Common Implementation Errors Countered
The best list of common implementation errors that lead to vulnerabilities would be a

large set from that specific system built up over decades of time, but this is rarely available.
The Common Weakness Enumeration (CWE) provides a large community-developed list
of common security weaknesses, but though important for many activities, it is too large
to use directly as a starting point for a single system. Here are some sources of information

All CAS
list weak-
nesses
addres-

sed

Entire most-
relevant security

guide applied

Hardening
applied

Stack canary (e.g.,
fstack-protector or
Visual Studio /GS)

Address Space
Layout

Randomization
(ASLR)

Non-
executable

stack /
Data

Execution
Prevention

Cause
undefined
construct
s to have
defined
behavior

1. Authentication
and access

control

2. Buffer
handling

3. Code quality

4. Control flow
management

5. Encryption
and randomness

6. Error handling 7. File handling

8. Infor-
mation
Leaks

9. Initialization
and shutdown

10. Injection

Most implementation
vulnerabilities are due to

common types of
implementation errors or

common misconfigurations,
so countering them greatly

reduces security risks

Reduce/eliminate
impact if defect exists

All of the most
common important

implementation
vulnerability types

(weaknesses)
countered

All of the most common
known security-relevant
misconfiguration errors

countered

11. Malicious logic

12. Number
handling

13. Pointer and
reference
handling

Encrypted
data at rest

Securely
reuse

Review before use

Get authentic
version

Use package
manager

Security in
implementation

2-14

on common kinds of vulnerabilities that can be used directly as a starting point for a single
system:

• The OWASP Top 10 is a common starting point for web applications. This is a
widely vetted list of the “top 10” implementation defects that lead to security
vulnerabilities. The example shown in Figure 3 is a combination of the 2013 and
2017 versions of the OWASP Top 10, and thus has 13 items. Note, however,
that the OWASP top 10 focuses on web applications and is not a good list for
embedded software (where other issues tend to dominate).

• The 13 weakness classes identified by the Center for Assured Software [CAS
2012] are useful; they are listed in Table 1. Note that the State-of-the-Art
Resources (SOAR) document [Wheeler 2016] builds on this structure. Figure 4
uses this structure.

• The CWE/SANS top 25 list6 is often used to identify common kinds of
vulnerabilities, especially for applications that are not web applications. This is a
widely used general list reviewed by many. There are minor complications when
using these vulnerability classes in an assurance case: they are ordered by a risk
score instead of having similar items grouped together (e.g., missing
authorization and incorrect authorization are far apart). That said, this list has
been widely vetted and is a good starting point for an assurance case.

• The NIST Bugs Framework is working to develop rigorous definitions and
(static) attributes of bug classes, along with their related dynamic properties.
[Bojanova 2016]

For a more specific focus on the weaknesses that will have the most impact to the
mission/business function, the project may consider predetermining its own top list of
weaknesses. One approach is to create a Top-n CWE list for the project. This can be done
by using past history, detailing what the software does, and considering the eight technical
impacts of software weaknesses. These eight technical impacts are read data, modify data,
DoS due to unreliable execution, DoS due to resource consumption, execute unauthorized
code or commands, gain privileges / assume identity, bypass protection mechanism, and
hide activities. For more about this approach, see the CWE documentation on prioritizing
weaknesses [MITRE 2018]. Additional information supporting this approach is available
in [MITRE 2017], section 2.2 of “Incorporating SwA into DoD Acquisition Contracts”
[OSD 2017], and “Scoring CWEs” [CWE 2017].

6 The CWE/SANS top 25 is available at http://cwe.mitre.org/top25/

2-15

Table 1. Weakness Classes from the Center for Assured Software

Weakness Class Example Weakness (CWE Entry)

Authentication and Access
Control

CWE-259: Use of Hard-coded Password

Buffer Handling (C/C++ only) CWE-121: Stack-based Buffer Overflow
Code Quality CWE-561: Dead Code
Control Flow Management CWE-483: Incorrect Block Delimitation
Encryption and Randomness CWE-328: Reversible One-Way Hash
Error Handling CWE-252: Unchecked Return Value
File Handling CWE-23: Relative Path Traversal
Information Leaks CWE-534: Information Exposure Through Debug Log

Files
Initialization and Shutdown CWE-404: Improper Resource Shutdown or Release
Injection CWE-134: Uncontrolled Format String
Malicious Logic CWE-506: Embedded Malicious Code
Number Handling CWE-369: Divide by Zero
Pointer and Reference Handling CWE-476: NULL Pointer Dereference

It could be argued that some of these common mistakes are really design flaws rather
than implementation errors. Structuring an assurance case that way would also be
reasonable. In the end, the real goal is to provide assurance to all stakeholders that common
mistakes are countered, and we find the structure shown here to be clear and useful.

2. Common Misconfigurations Countered
Misconfiguration errors are typically specific to a programming language,

framework, and/or platform. There are already guidance documents for many common
ones; web searches can often quickly find some possibly relevant guides.

3. Hardening Applied
Hardening measures are measures that would not be strictly required if the other parts

worked perfectly, but because humans and machines are imperfect, hardening measures
are an extremely important set of measures for reducing the probability or impact of risks.
In a web application, measures such as using a restrictive Content Security Policy (CSP)
and incoming rate limits can be very useful.

As noted earlier, embedded software often has additional risks due to the use of
memory-unsafe languages (usually C or C++) or disabled memory safety checks. A variety
of countermeasures can be used to reduce the risk that the inevitable implementation errors
will lead to vulnerabilities caused by the lack of memory safety. These countermeasures

2-16

include Address Space Layout Randomization (ASLR), stack canaries (enabled by options
such as fstack-protector or Visual Studio’s /GS), and the use of non-executable stack / data
execution prevention. Some systems may also support control flow integrity; this should
normally be enabled where available.

Another problem with C and C++ is that they have a large number of constructs with
undefined behavior; undefined behavior can immediately lead to security vulnerabilities,
and it is difficult to develop large programs without accidentally causing them. One way
to counter undefined behavior is to intentionally enable compiler options to cause
undefined behaviors to be defined (e.g., gcc or clang support -fwrapv (wrap signed integer
overflow), -fno-strict-overflow, -fno-strict-aliasing, and -fno-delete-null-pointer-checks).
Another approach (not shown in the figure) is to use compiler options to enable run-time
detection of some undefined behavior so that it can be detected during tests (e.g., gcc/clang
-ftrapv (generates code to trap signed integer overflows), -fsanitize=address, -
fsanitize=unsigned-integer-overflow, -fsanitize=undefined, and -fcatch-undefined-
behavior).

4. Securely Reuse Software
We must also securely reuse software. Such software is a key part of our incoming

supply chain. Typically, developers can do at least some basic review before use (e.g., look
at the supplier’s website for signs of problems), get an authentic version (by using HTTPS
and double-checking the name), and use a package manager to track reused software. Such
software may be proprietary software or open source software (OSS).

A key challenge today is to review proprietary software in depth where it matters.
OSS provides the source code, so potential users can review the software themselves, hire
others to do so, or read the reviews by others. In contrast, the source code for proprietary
software is often not easily available for review. In some cases, a supplier may be willing
to provide source code under some non-disclosure agreement. Potential users may be able
to examine the binary (executable) code more deeply using various binary analysis
techniques. This can include testing it using simulated attacks (the CAPEC attack patterns
may be useful for this purpose). Another approach is to run it in a sandbox to attempt to
detect unacceptable behavior. Learning more about the supplier may also help (e.g., the
supplier’s reputation and development processes). As the probability or impact of problems
increases, the measures necessary may increase. None of these measures is foolproof; the
goal in all cases should be to reduce the risk to acceptable levels, not to eliminate all risk.
If review cannot adequately reduce the risk, design changes (such as restricting that
component’s privileges) and/or replacing the component may be warranted.

2-17

D. Other Life Cycle Processes
We should also consider all the other software life cycle processes beyond the

technical processes. The 12207 standard defines three other process groups, with a number
of processes within each one as shown:

• Agreement: acquisition and supply processes

• Organizational project-enabling: life cycle model management, infrastructure
management, portfolio management, human resource management, quality
management, and knowledge management processes

• Technical management: project planning, project assessment and control,
decision management, risk management, configuration management,
information management, measurement, and quality assurance processes

Figure 5 shows an assurance case pattern using this as a starting point.

Figure 5. Other Life Cycle Processes

The example shown here notes that if your system depends on a content distribution
network (CDN) provider, it would be wise to have a support contract with them. If there is
no CDN, then there is no need for a contract with one, but the general pattern still stands:
If it’s important for an organization’s mission, it’s wise to have a support contract with
someone to support it.

Security implemented by other
life cycle processes

Acquisition
Project

planning

Infrastructure
management

Human
resource

management
 (people)

Key developers
know how to

develop secure
software

Risk
management

Configuration
management

Quality
assurance

Contracts
with

deployment
and CDN
provider

Development
& test

environments
protected from

attack

CI automated
test

environment
does not have
protected data

Agreement
processes Organizational

project-enabling
processes

Technical
management

processes

2-18

More generally, an acquirer can contract for a security assurance case, including its
supporting evidence. That would enable an acquirer to judge the security assurance of what
is being developed.

One weakness of a “process-oriented” view is that it can be easy to focus on only the
process and not on the actual project state or results. This can especially be a problem with
the “infrastructure management” and “human resource management” processes:

• Infrastructure management: It is important that the enabling environments (e.g.,
the development and test environments) actually be secure. Just having a process
for establishing or evaluating infrastructure is not enough.

• Human resource management: It is important to have good people—in
particular, key people must understand how to develop secure software if the
results are to be secure. For example, the key people must understand the
system’s security requirements, must know how to design for security (including
knowing secure design principles), must know common implementation failures
and how to counter them, and must know how to verify that a system has
adequate security (e.g., must understand the different kinds of tools that can be
used and what they are effective for). Just having a process for hiring and
evaluating people is not enough.

Risk management is vital, indeed, all of assurance could be considered a subset of
risk management. In this assurance case, we could have placed “Criticality Analysis,
Vulnerability Assessment, Risk Assessment, Protection Measure Selection” (aka the “TSN
Analysis Methodology”) under risk management instead. When developing an assurance
case, the primary point is to provide a justification to ensure that the important activities
are getting done and that they are likely to lead to adequate results; exact placement is less
important for real systems.

E. Real Assurance Cases Include Supporting Text
In practice, an assurance case is a combination of figures and supporting text. Figures

are good at showing larger structure, but can become voluminous and are time-consuming
to edit—especially without tools specifically designed to edit assurance cases. We
generally recommend using figures to show the larger structure and separate supporting
text to provide important details. There should normally be supporting text in at least all
the leaves of the diagram to provide additional justification (unless no detail is necessary),
as illustrated in Figure 6.

2-19

Figure 6. Supporting Text Provides Important Details

For example, in most cases we choose to not show evidence in our figures, but instead
provide evidence in the supporting text. We do this because (1) large figures are time-
consuming to edit and (2) for many purposes, it is adequate to provide evidence only in the
supporting text. Other organizations may choose to show evidence in the figures in more
cases than we have done here.

F. Determining Adequacy
The pattern shown here is not enough for a real system. As noted earlier, we expect

that those who use this pattern will add key factors specific to their system, such as the
system’s specific requirements, and they may modify the assurance case as necessary to
best address their system’s needs.

How deep and rigorous the assurance case must be depends on a variety of factors,
including the impact of failure (should a vulnerability be exploited), the likelihood of
attack, and the probable strength of those attacks. As noted in [NIST SP 800-160], “The
specific form of an assurance case and the level of rigor and formality in acquiring the
evidence required by the assurance case is a trade space consideration.” The point is to
develop an assurance case for the system you are responsible for, so that all relevant
stakeholders can understand what will be done and eventually agree that it is (or is not)
sufficient. Simply having an assurance case is no guarantee that everything is adequately
secure. Instead, an assurance case provides a structured approach so that important
decisions can be made within their full context.

[Blanchette 2009a] makes the following observation that we agree with: “There is an
enormous tendency to make very small steps in logic as one progresses down the analysis
path in order to ensure the absolute soundness of the argument… However, when dealing
with a vast analysis space and limited time, one must balance between precision in
argument and comprehensibility. At some point, adding more detail is of diminishing value
and judicious choices must be made about what to represent and what to omit.”

Arg
1a13

Claim 1

Arg 1a1

Arg
1a12

Arg
1a11

Subclaim 1a Subclaim 1b

Arg
1a22

Arg 1a2

Arg
1a21

Arg
1b12

Arg 1b1

Arg
1b11

Support-
Ing text Support-

Ing text

Support-
Ing text

Support-
Ing text

Support-
Ing text Support-

Ing text
Support-
Ing text

2-20

In practice, an assurance case is never “done” until the system has been retired. It may
need to be updated as the system is modified. In addition, stakeholders will identify over
time various ways that the assurance case should be improved. This is not a failing but a
success; an assurance case makes it much easier to determine what is done and not done,
so that pointed questions can be directly answered.

[Blanchette 2009a] demonstrates one simple approach to indicate risk: color-coding
the claims7 and evidence. In their case, they colored symbols red for high risk, yellow for
medium risk, and green for low risk. More specifically:

• For evidence:

– Green: Evidence is complete and adequate

– Yellow: Evidence is incomplete or planned for the future

– Red: Evidence is complete but inadequate, planned but now late, or non-
existent

• For claims:

– Green: All lower-level claims and supporting evidence are green

– Yellow: Some lower-level claims and supporting evidence are a combination
of yellow and red

– Red: All, or an overwhelming majority of, lower-level claims and supporting
evidence are red

Such color-coding may be useful in some projects, though we do not use it in our
sample application. We now turn to that sample application, to show how this security
assurance case pattern can be applied in a real system.

7 They do not separately discuss claims and arguments; we suggest reading “claims” as “claims and

arguments” in this color-coding example.

3-1

3. Sample Assurance Case Application

This chapter shows how the pattern previously explained in chapter 2 can be applied.
This is a real assurance case from a real commercial system, specifically the CII Best
Practices Badge application (aka the “BadgeApp”). For more about that system, including
more details about its assurance case, see [Wheeler 2018a]. As more details are available
elsewhere, we will only briefly highlight a few points, focusing on how the pattern was
adjusted and expanded for a particular system.

This particular assurance case was developed using only simple graphics editing tools
(in this case LibreOffice Draw) and a text editor. The actual figures do not refer to other
figures by number, since that could have made updating the figures more complicated. A
specialized tool might be appropriate for a larger assurance case. However, this example
clearly illustrates that specialized tools are not necessary to get started.

In practice, the pattern shown in chapter 2 was derived from the material in this
chapter, but we believe this order is easier to understand. As we have already discussed the
overall pattern, in this section, we only discuss the issues specific to applying the pattern
to this particular system.

A. Top Level
We have a single overall claim that the “system is adequately secure against moderate

threats.” This is decomposed further.

Notice that we have a number of very specific security requirements that are specific
to this system and do not necessarily apply to other systems. For example, confidentiality
is easier when the data the system manages is almost all public, but this is not realistic for
many systems.

That said, some of the requirements shown here do apply to many other systems.
Systems that authenticate users using passwords should in almost all cases store passwords
as iterated per-user salted hash algorithms (such as bcrypt); this is widely considered to be
a minimum standard today. Multiple backups are wise to have where it is practical. In
general, ensure that only authorized developers can make changes to the software, and use
version control software to record every change, who made the change, and when the
change was made. In many cases, both data in motion and data at rest should be encrypted.

3-2

Figure 7. Application: Top Level of Assurance Case

As noted earlier, an assurance case is not just a few figures. Different people might
choose to represent in figures what others would choose to represent in text; what matters
is whether or not the assurance case is adequate for its purpose. In practice, an assurance
case often uses figures to show a higher-level view, combined with other textual material
to provide more detailed information.

Below is the supporting text for two of the nodes shown in the figure: Email addresses
(only revealed to owner & admins) and Data modification requires authorization? The
shaded text is quoted directly from [Wheeler 2018a]. Note the following points about this
supporting text:

• The supporting text provides additional detail that justifies that the requirements
really are met. Recall that the goal is to provide enough justification to satisfy
the stakeholders. This supporting text subdivides the problem further to show (1)
all relevant circumstances and (2) that each circumstance is handled properly.
For example, the reference to “grep” below provides information on how
someone could verify that all relevant circumstances have been covered. In
many examples, this assurance case provides (as evidence) the identity of

Assets &
threat actors
identified &
addressed

System is adequately
secure against moderate

threats

Confidentiality Integrity Availability

Almost all
data not

confidential

Non-public
data is

kept confi-
dential

User passwords
(Passwords

stored on server
as iterated salted

hashes using
bcrypt)

Remember me
token (If

“remember me”
enabled a

cryptographic
nonce is stored

on client &
bcrypt digest

stored on
server)

Email
addresses

(only
revealed to

owner &
admins)

Security implemented in
all software

development processes

HTTPS
(data in
motion)

Modifications
to official

application
requires

authorization
via GitHub

Can
return to
operation

quickly
after

DDoS
ended

Cloud &
CDN

deploy-
ment
allow
quick
scale-

up

Timeout

Multi
-ple
back
-ups

Security requirements
identified and met by

functionality
Security implemented by

software life cycle processes

See figure 9

Access
control

Identifi-
cation

Authenti-
cation

Authori-
zation

Login
dis-

abled
mode

3-3

specific code that implements the requirement and specific automated test(s) that
verify them.

• Formatting here follows the original. For example, these subsections use straight
quotes and courier font where they are used in the quoted text.

• This sample supporting text refers to other document sections that we have not
included (e.g., sections about encrypted email addresses, authorization, and the
additional_rights table). These other sections are not necessary for our purposes.
For the complete example, see [Wheeler 2018a].

We follow this supporting text with an example of how some of that supporting text
could be represented graphically instead.

1. Sample Supporting Text: Email Addresses
Email addresses are only revealed to the owner of the email address and to

administrators.

We must store email addresses, because we need those for various purposes. In
particular, we must be able to contact badge entry owners to discuss badge issues (e.g., to
ask for clarification). We also user email addresses as the user id for "local" accounts. Since
we must store them, we strive to not reveal user email addresses to others (with the
exception of administrators, who are trusted and thus can see them).

Here are the only ways that user email addresses can be revealed (use grep -Ri
'user.*\.email' ./ to verify):

• Mailers (in app/mailers/). The application sometimes sends email, and in all
cases email is sent via mailers. Unsurprisingly, we need destination email
addresses to send email. However, in all cases we only send emails to a single
user, with possible "cc" or "bcc" to a (trusted) administrator. That way, user
email addresses cannot leak to other users via email. This can be verified by
examining the mailers in directory app/mailers/ and their corresponding views
in app/views/*_mailer/. Even the rake task mass_email (defined in file
lib/tasks/default.rake), which can send a message such as "we have been
breached" to all users, sends a separate email to each user using a mailer. A
special case is when a user changes their email address: in that case, information
is sent to both email addresses, but technically that is still an email to a single
user, and this is only done when someone is logged in with authorization to
change the user email address.

• The only normal way to display user email addresses is to invoke a view of a
user or a list of users. However, these invoke user views defined in
app/views/users/, and all of these views only display a user email address if

3-4

the current user is the user being displayed or the current user is an
administrator. This is true for views in both HTML and JSON formats. The
following automated tests verify that email addresses are not provided without
authorization:

– should NOT show email address when not logged in

– JSON should NOT show email address when not logged in

– should NOT show email address when logged in as another user

– JSON should NOT show email address when logged in as another

user

• The reminders_summary view in
app/views/projects/reminders_summary.html.erb does display user email
addresses, but this is only displayed when a request is routed to the
reminders_summary method of the projects controller
(app/controllers/projects_controller.rb), and this method only displays
that view to administrators. This is verified by the automated test Reminders
path redirects for non-admin.

• As a special case, a user email address is included as a hidden field in a local
user password reset in app/views/password_resets/edit.html.erb.
However, this is only displayed if the user is routed to the "edit" method of
app/controllers/password_resets_controller.rb and successfully meets
two criterion (configured using before_action): require_valid_user and
require_unexpired_reset. The first criterion requires that the user be
activated and provide the correct reset authentication token that was emailed to
the user; anyone who can do this can already receive or intercept that user's
email. The need for the correct authentication token is verified by the automated
test password resets.

As documented in CONTRIBUTING.md, we forbid including email addresses in
server-side caches, so that accidentally sharing the wrong cache won't reveal email
addresses. Most of the rest of this document describes the other measures we take to prevent
turning unintentional mistakes into exposures of this data.

Note: As discussed further in the later section on "Encrypted email addresses", we
also encrypt the email addresses using AES with 256-bit keys in GCM mode ('aes-256-
gcm'). We also hash the email addresses, so they can be indexed, using the hashed key
algorithm PBKDF2-HMAC-SHA256. These are strong, well-tested algorithms. We
encrypt email addresses, to provide protection for data at rest, and never provide the keys
to the database system (so someone who can only see what the database handles, or can
get a copy of it, will not see sensitive data including raw passwords and unencrypted email

3-5

addresses). These are considered additional hardening measures, and so are discussed
further in the section on hardening.

2. Sample Supporting Text: Data Modification Requires Authorization.
Here we describe how these authorization rules are enforced. We first discuss how to

modify data through the BadgeApp application and then note that data can also be modified
by modifying it via the underlying database and platform. For more about the authorization
rules themselves, see the section on authorization. Note that gaining authorization first
requires logging in (which in turn requires both identification and authentication).

The only kinds of data that can be modified involve a project or a user, and this data
can only be modified through the application as follows:

• Project: Any project edit or deletion request is routed to the appropriate method
in the projects controller in app/controllers/projects_controller.rb.
Users cannot invoke any other method to modify a project other than the four
methods corresponding to the requests identified below, and these cannot be
executed unless the appropriate authentication check has succeeded:

– In the case of an edit or update request, there is a before_action that
verifies that the request is authorized using the check method
can_edit_else_redirect. (Note: technically only update needs
authentication, since edit simply displays a form to fill out. However, to
reduce user confusion, we prevent displaying a form for editing data unless
the user is authorized to later perform an update.) This inability to edit a
project without authorization is verified by automated tests should fail to
update project if not logged in and should fail to update other
users project.

– In the case of a delete_form or destroy request, there is a before_action
that verifies that the request is authorized using the check method
can_control_else_redirect. (Note: Again, technically only destroy needs
authentication, but to reduce user confusion we will not even display the form
for destroying a project unless the user is authorized to destroy it.) This
inability to destroy a project without authorization is verified by automated
tests should not destroy project if no one is logged in and should
not destroy project if logged in as different user.

• User: Any user edit or deletion request is routed to the appropriate method in the
user controller in app/controllers/users_controller.rb. These cannot be
executed unless the appropriate authentication check has succeeded. In the case
of an edit or update or destroy request, there is a before_action that
verifies that the request is authorized using the check method

3-6

redir_unless_current_user_can_edit. Users cannot invoke any other
method to modify a user. This inability to edit or destroy a user without
authorization is verified by these automated tests:

– should redirect edit when not logged in

– should redirect edit when logged in as wrong user

– should redirect update when not logged in

– should redirect update when logged in as wrong user

– should redirect destroy when not logged in

– should redirect destroy when logged in as wrong non-admin

user

The additional_rights table, described below, is edited as part of editing its
corresponding project or deleting its corresponding user, and so does not need to be
discussed separately. No other data can be modified by normal users.

It is also possible to directly modify the underlying database that records the data.
However, only an administrator with deployment platform access is authorized to do that,
and few people have that privilege. The deployment platform infrastructure verifies
authentication and authorization.

3. Sample Graphical Representation That Data Modification Requires
Authorization
The actual assurance case only had the supporting text for the claim that “Data

modification requires authorization.” Text is easy to maintain, and the stakeholders were
satisfied having that detail in text.

However, some stakeholders may prefer to have more of the assurance case
represented using a graphical notation. Figure 8 is an example showing how more
information could be provided using a graphical notation (as was not done in the actual
system). Note that this graphical representation would still need to be supplemented with
text; see the previous discussion of text versus graphical representations in section 2.E. In
addition, this sample graphical representation includes some specific information such as
the names of controllers, methods, and authorization checks.

3-7

Figure 8. Graphical Representation That Data Modification Requires Authorization

B. Life Cycle Processes
Figure 2 shows a set of arguments to justify the claim that security is implemented in

all software life cycle processes.

A secure system requires a secure design. It is wise to apply threat modeling (aka
attack modeling) so that the system is evaluated from an attacker’s viewpoint before it is
even built. In this example, we used STRIDE,8 which examines the security issues in every
major design component. The actual assurance case in [Wheeler 2018a] walks through
each design component and shows that each design component is adequate for its purpose
(from a security point-of-view).

8 STRIDE is a mnemonic, not an acronym. It is used to remind users of the following list of attacks to

counter: spoofing of user identity, tampering, repudiation, information disclosure (privacy breach or data
leak), DoS, and elevation of privilege.

Only project & user
data can be

modified through
the application

Modification of
project data

requires
authorization

Modification of
user data
requires

authorization

Directly modifying
the underlying

database requires
administrator with

deployment
platform access

privilege

Data modification requires
authorization

Users cannot
invoke any

other method to
modify project
data other than

edit,update,
delete_form, or

destroy, as
routed through

the
projects_control

ler

In an edit or
update request,
before_action

can_edit_else_re
direct verifies

that the request
to modify project

data is
authorized

In an delete_form or
destroy request,
before_action

can_control_else_re
direct verifies that

the request to modify
project data is

authorized

Users cannot
invoke any

other method to
modify user

data other than
edit,update, or

destroy, as
routed through

the
users_controller

In an edit, update,or
destroy request,
before_action

redir_unless_current_
user_can_edit
verifies that the

request to modify
user data is
authorized

3-8

Figure 9. Application: Life Cycle Processes

Secure design principles were also applied, in this case, the well-known principles
from Saltzer and Schroeder (S&S). For more about the S&S principles, see [Saltzer 1975].
The actual assurance case discussed “simple design” separately, and noted that it was an
S&S principle. As noted earlier, we have supplemented the S&S principles with two more:
having a limited attack surface and using input validation with whitelists.

The example system uses memory-safe programming languages, in this case Ruby.
This eliminates the risk of using memory-unsafe languages in custom code as discussed in
section 2.B.1.

Memory
-safe
lang-
uages

Security implemented by
software life cycle processes

Security
in design

Secure design
principles applied,
including all S&S

Availability
through scalability

Security in
integration &
verification

Security in
maintenance

Security in
transition &
operation

Auto-detect
vulnerabilities
when they are

publicly reported

Style
checking

tools
Source
code

weakness
analyzer

Automated
testing,
>90%

coverage

FLOSS

Certifications
& controls

Security in
requirements

See first figure

Detect Exter-
nal

(monit
oring)

Recovery
plan incl.
backups

Internal
(logging/
anomaly

detection)Online
checkers

Economy
of mecha-

nism
(simple
design)

Complete
mediation

Fail-safe
defaults

Open design
Separation
of privilege

Least
common

mechanism

Least
privilege

Psychological
acceptability

Limited attack
surface

Input validation
with whitelists

See figure 10

Deploy-
ment

provider

STRIDE
threat
model

analyzed

Negative
testing

Statement
Coverage

100%

CII Best
Practices

Badge

Security implemented
by software life cycle
technical processes

Security
implemented by
other life cycle

processes

Simple
design

Rapid update

Security in
implementation

3-9

Of course, we must verify the software. This system has an automated test suite. The
project’s policy is to require at least 90% statement coverage, but in practice it has 100%
statement coverage, and its test suite includes “negative tests” to ensure that important
security-related actions that should fail will actually fail.

Many systems must acquire certifications and accreditations. The example system has
acquired the Core Infrastructure Initiative (CII) Best Practices badge (that is, it has earned
the very badge it also manages).

We now turn to the part of the assurance case that focuses on implementation.

C. Implementation
Of course, if the software as implemented is not secure, the system it controls is

unlikely to be secure. Figure 3 shows the portion of the assurance case focusing on the
software implementation.

The best list of common implementation errors that lead to vulnerabilities would be a
large set from that specific system built up over decades of time, but this is rarely available.
This system uses a common alternative for web applications, the OWASP Top 10, a widely
vetted list of the “top 10” implementation defects that lead to security vulnerabilities. In
fact, it uses a combination of the 2013 and 2017 versions, for a total of 13 issues. When it
was developed, the 2017 version did not exist, and there are advantages to covering both
sets.

Misconfiguration errors are typically specific to a programming language,
framework, and/or platform. There are already guidance documents for many common
ones; web searches can often quickly find some possibly relevant guides.

3-10

Figure 10. Application: Implementation

As stated earlier (and restated here for emphasis), hardening measures are extremely
important for reducing the probability or impact of risks. In a web application, measures
such as using a restrictive CSP and incoming rate limits can be very useful.

In this particular example, we have some specialized hardening titled “Gravatar
restricted.” This particular system uses the “Gravatar” service (this service provides an
avatar image given an email address’ MD5 hash). To provide additional protection of email

All
OWASP
top 10
(2013 &
2017)

countered

Entire most-
relevant security

guide applied

Hardening
applied

Hardened
outugoing HTTP

headers, including
restrictive CSP

Incoming
rate
limits

Force
HTTPS,
including
via HSTS

CSRF
token

harden-
ing

Outgoing
email

rate limit

1. Injection (incl.
SQL injection)

2. Auth &
session

3. XSS

4. Insecure
object references

5. Security
misconfiguration

6. Sensitive data
exposure

7. Missing
access control

8. CSRF

9. Known
vulnerabilities

10. Unvali-
dated

redirect/fwd

See securely
reuse (supply chain)

See security guide applied

Most implementation
vulnerabilities are due to

common types of
implementation errors or

common misconfigurations,
so countering them greatly

reduces security risks

Reduce/eliminate
impact if defect exists

All of the most
common important

implementation
vulnerability types

(weaknesses)
countered

All of the most common
known security-relevant
misconfiguration errors

countered

Esp. SafeBuffer

11. XXE (2017 A4)

12. Insecure
deserialization

(2017 A8)

13. Insufficient
logging and

monitoring (2017
A10)

Encrypted
email

addresses

Gravatar
restricted

Cookie
limits

Securely
reuse

Review before use

Get authentic
version

Use package
manager

Security in
implementation

3-11

addresses, the system only provides links to the Gravatar service when the user has an
image there. See the system’s assurance case for details; the point is that specialized
system-specific hardening measures can be used.

D. Other Life Cycle Processes
We should also consider other software life cycle processes beyond the technical

processes. These are the agreement processes, organizational project-enabling processes,
and technical management processes. This figure is the same as the pattern shown earlier;
we include it here for completeness. Again, for more detail see [Wheeler 2018a].

Figure 11. Application: Other Life Cycle Processes

Security implemented by other
life cycle processes

Acquisition
Project

planning

Infrastructure
management

Human
resource

management
 (people)

Key developers
know how to

develop secure
software

Risk
management

Configuration
management

Quality
assurance

Contracts
with

deployment
and CDN
provider

Development
& test

environments
protected from

attack

CI automated
test

environment
does not have
protected data

Agreement
processes Organizational

project-enabling
processes

Technical
management

processes

4-1

4. Conclusions

We have presented a sample security assurance case pattern along with a specific
example. There is no reason to believe that another system’s assurance case should look
exactly like the pattern shown here. We expect that those who use this pattern will modify
it as necessary to fit their system.

You may or may not agree that the sample assurance case is appropriate for the sample
system—but that is not the point. Instead, the point is to develop an assurance case for the
system you are responsible for, so that all relevant stakeholders can understand what will
be done, and eventually agree that it is (or is not) sufficient.

An assurance case provides a structured approach so that important decisions can be
made within their full context. In the past, some have had trouble developing a security
assurance case because of the lack of a pattern or limited public examples. We hope that
this pattern, coupled with a public example of its application, will help those trying to
develop a security assurance case for their system.

A-1

Appendix A.
Processes Are Neither Phases nor Stages

It’s important to clarify that the word “process” has a different meaning from the word
“phase.” A “phase” is simply a period of time, and each phase is typically associated with
a major decision point. A common synonym for phase is “stage.” In contrast, a “process”
is a “set of interrelated or interacting activities that transforms inputs into outputs” [ISO
12207:2017].

The processes that occur and reoccur throughout the life cycle are typically performed
simultaneously and in parallel, iterating and feeding back as appropriate. Processes
typically recur within multiple or all phases; for example, the systems/software
requirements definition process typically recurs in every phase or stage of a system’s
development and maintenance, because there is always a need to capture requirements
(including changed requirements). These attributes make processes fundamentally
different from phases or stages. Processes can be done in a strict order. For example, in a
strict waterfall model, each process is done to completion in a strict sequence. However,
as noted in [Royce 1970], this strict waterfall approach “is risky and invites failure.” In
practice, processes reoccur throughout the life cycle.

In contrast, phases (aka stages) are often done in a specific order. For example, DoD
Instruction 5000.02 defines a standard structure of phases: the material solution analysis
phase, technology maturation and risk reduction (TMRR, aka “pre-milestone B”) phase,
the engineering and manufacturing development (EMD) phase, the production and
deployment phase, and the operations and support phase. These phases can be eliminated
and combined, and other tailoring is possible [DoDI 5000.02]. Again, note the contrast:
The same process (e.g., systems/software requirements definition or verification) may
occur in many (or all) phases.

Figure 12 visually illustrates the contrast between phases and processes. The top part
shows the DoD Instruction 5000.02 standard structure of phases [DoD 5000.02]. The
bottom part shows the life cycle processes as defined by ISO/IEC/IEEE 15288:2015 [ISO
15288:2015] and ISO/IEC/IEEE 12207:2017 [ISO 12207:2017]; the technical processes
are directly identified, whereas the three other process groups are summarized due to space
limitations. The various smaller arrows illustrate that processes accept inputs from other
processes, and generate results to other processes, in a deeply and fundamentally
intertwined way. The larger arrows illustrate that most processes typically reoccur in all or

A-2

nearly all phases. Note that these processes do not define a life cycle; instead, life cycle
processes occur and re-occur within the life cycle of a system or of software.

Figure 12. Phases vs. Processes

We emphasize the difference between phases and processes because many parts of
this document are structured around processes, not phases. When discussing the major
decision points in system acquisition it is useful and appropriate to focuses on phases.
However, we find that processes are a better way to organize and discuss the specific
assurance activities that occur within software development and sustainment. For example,
if we organized this document by phase, we would need to repeat the same material for
each phase, which would be repetitive and confusing. In addition, a phase-based structure
would be hard to apply to all software, because not all systems use the same set of phases.
Even within the DoD, Figure 12 merely shows the DoD Instruction 5000.02 standard
structure of phases; in the DoD, these phases can be eliminated and combined, and other
tailoring is also possible [DoDI 5000.02]. By focusing on the processes, we can avoid
repetition, reduce confusion, and address assurance issues for all software development
and maintenance projects.

This document is not the only document organized by processes and not by phases.
The National Defense Industrial Association (NDIA)’s Engineering for System Assurance
[NDIA 2008] is organized in exactly the same way (by process) for essentially the same

Transition

Design definition

Architecture definition

Systems/Software requirements definition

Stakeholder needs and requirements definition
Business or mission analysis Disposal

Verification
Integration

Implementation

System analysis

Maintenance

Operation

ValidationTechnical management processes
…

Organizational project-enabling processes
… Agreement processes

Ph
as

es
 (a

ka
 st

ag
es

)
Pr

oc
es

se
s

A-3

reasons. The ISO/IEC/IEEE 15288:2015 and ISO/IEC/IEEE 12207:2017 standards also
focus on defining processes within a life cycle, not phases.

B-1

Appendix B.
How an Assurance Case can Support Other

Documents and Processes

Security assurance cases are often not directly required for a project.9 For example,
DoD Instruction 5000.02 [DoD 5000.02] does not directly require the creation of an
assurance case. Instead, an assurance case is a conceptual tool that can help a project that
develops and sustains a system, including helping that project develop the system and
documentation that they are required to do. Some documents do expressly describe their
relationship with assurance cases, such as [NDIA 2008], [ISO 12207], [NIST SP 800-53A],
and [NIST SP 800-160], but others do not.

This chapter shows how a security assurance case can support some other documents
and processes. When an assurance case is directly discussed, we note that. In addition, we
show examples of how a security assurance case can support that document. We will not
try to show all ways that an assurance case can support those other documents and
processes, as that would be voluminous. After all, an assurance case provides an integrated
view of many other materials, so in practice there would often be many connections.
Instead, we focus on some important or illustrative examples. Remember: An assurance
case is simply a tool. The end goal is to develop and maintain an adequately secure system
and to show that it is adequate, not to create an assurance case.

Below, we identify a few documents (many of which imply certain processes) and a
few examples of how a security assurance case can support each of those documents. We
particularly emphasize DoD-related documents.10

1. DoD Instruction 5000.02
DoD Instruction 5000.02 [DoDI 5000.02] provides instructions for the “management

of all [covered] acquisition programs.” Enclosure 11 requires initiation of the
Cybersecurity RMF as early as possible (per DoD Instruction 8510.01) and a Cybersecurity

9A project’s contract could expressly require an assurance case for security, including its supporting

evidence, and even cite the ISO/IEC 15026 standard as additional information. However, such contracts
are rare today.

10 A useful source for official DoD instructions is http://www.esd.whs.mil/Directives/issuances/dodi/

B-2

strategy as an appendix to the Program Protection Plan (PPP). Enclosure 14 also notes the
RMF and PPP. We will discuss those other materials separately.

The purpose of DoD Instruction 5000.02 enclosure 14 is to address “Cybersecurity in
the Defense Acquisition System.” Here are some of its requirements, and how an assurance
case can support them:

• 1a(1) says, “Cybersecurity is a requirement for all DoD programs and must be
fully considered and implemented in all aspects of acquisition programs across
the life cycle.” An assurance case (especially when organized with this pattern)
can make it easy to consider and implement assurance across the life cycle and
also demonstrates it by showing in a structured way how assurance is fully
considered.

• 3b(1)(c) says, “Use requirements derivation methods, such as system modeling
and analysis, security use and abuse or misuse cases, criticality analysis, and
vulnerability analysis to determine cybersecurity requirements that are sufficient
to minimize vulnerabilities introduced by design, implementation, system
interfaces, and access points.” An assurance case is a requirements derivation
method to determine that cybersecurity requirements are sufficient to minimize
vulnerabilities introduced by other factors.

• 3b(2) says, “Allocate cybersecurity and related system security requirements to
the system architecture and design, and assess for vulnerabilities.” An assurance
case aids analysis of the allocation of security requirements to the architecture
and design to enable assessment for vulnerabilities.

• 3b(4) says, “(4) Include cybersecurity and related system security in the conduct
of technical risk management activities and change management processes to
address risk identification, analysis, mitigation planning, mitigation
implementation, and tracking.”

• 3b(5) says, “Use evolving program and system threat assessments to
continuously assess cybersecurity risks to the program and system.” As
information about attackers is gathered, the assurance case can provide a
unifying source of information to enable continuous assessments of risks.

2. DoD Program Protection Plan (PPP)
The outline of the DoD program protection plan (PPP) [PPP 2011] is intentionally

simple and streamlined:

• Section 2.2: The “CPI and Critical Components Countermeasure Summary”
table maps CPI and components to countermeasures; the assurance case can

B-3

identify the countermeasures, as well as which ones are being applied to the CPI
and components, and show why they needed.

• Section 5: This “Threats, Vulnerabilities, and Countermeasures” section can be
summarized from the assurance case.

• Section 5.2 asks “How will identified vulnerabilities be mitigated?” The PPP
can provide a brief summary; the assurance case can justify this, and drill down
to show why the mitigations will be adequate.

• Section 5.3 (Countermeasures) has various questions. Its question, “How will
countermeasures be selected to protect CPI and critical functions/components?”
can be answered by “analysis and approval of the assurance case justifying their
adequacy.” It also asks to “Succinctly describe the implementation of each
countermeasure used to protect CPI and critical functions and components.”
Again, this can be summarized from the assurance case.

• Section 5.3.3 (Software Assurance) also asks various questions.

– The question, “How will software be designed and tested to assure protection
of critical functionality and CPI?” can be answered by walking through those
portions of the assurance case.

– The question, “How will software architectures, environments, designs, and
code be evaluated with respect to CVE (Common Vulnerabilities and
Exposures), CAPEC (Common Attack Pattern Enumeration and
Classification), and CWE (Common Weakness Enumeration)?” can be
directly answered through the assurance case. If you follow the suggested
pattern, the CVEs can be addressed through “securely reuse” (especially
review before use) before selection and the maintenance item “auto-detect
vulnerabilities when they are publicly reported” after that. CAPEC is at least
addressed by considering the threat, and can be more thoroughly addressed by
performing the item “threat (attack) model analyzed” with a view towards
attack processes. The security in implementation section directly addresses
CWEs.

3. DoD Cybersecurity Strategy
“The Clinger-Cohen Act (40 U.S.C. Subtitle III) in the 2001 NDAA §811(P.L. 106-

398), DoDI 5000.02, Operation of the Defense Acquisition System, and DoDI 8500.01,
Cybersecurity, set policy to ensure programs have a strategy to implement cybersecurity
and manage associated risks…. All Acquisition programs acquiring systems containing
information technology are required to develop and maintain a Cybersecurity Strategy…
the Cybersecurity Strategy is a required acquisition program document created and

B-4

maintained by the Program Office and appended to the Program Protection Plan (PPP).”
[Cybersecurity Strategy 2015].

As with the PPP, this is a summary document; it is presumed that more detailed
analysis occurs elsewhere. Here are some examples of connections:

• Section III (Cybersecurity Approach), A (Management Approach), 1
(Stakeholder Communication and Documentation) says, “Describe methods and
periodicity of communication between program and AO/AODR, including the
communication of risks and changes affecting risk posture. Describe how the
program will plan for stakeholder input (e.g. Integrated Product Teams (IPT),
working groups) and plan for assembly, dissemination, and coordination of
required documentation including documentation of cybersecurity risks.” An
assurance case can be a key integrator of that documentation, and the way it is
maintained can answer the other questions.

• Section III (Cybersecurity Approach), B (Technical Approach), 3 (Risk
Assessments) says, “Describe [the] plan for periodic RMF risk assessments
(including periodicity, stakeholders, and methodology); Describe how they will
be integrated with other risk assessment activities, including TSN Analysis
(including criticality analysis), programmatic risk assessments, and operational
testing.” An assurance case can be mechanism for integrating the discussion and
results of these various activities.

4. DoD Instruction 5200.44
DoD Instruction 5200.44 is the policy on the “Protection of Mission Critical

Functions to Achieve Trusted Systems and Networks (TSN)” [DoDI 5200.44]. This is a
high-level policy, and there are many ways to achieve its ends. Here are a few of its points,
and their possible connections to an assurance case:

• 4a says, “Mission critical functions and critical components within applicable
systems shall be provided with assurance consistent with criticality of the
system, and with their role within the system.” A security assurance case can
help provide confidence that the functions and critical components are provided
with assurance consistent with their criticality and role, as it shows why the
assurance provided is believed to be adequate.

• 4c says, “Risk to the trust in applicable systems shall be managed throughout the
entire system lifecycle [sic].” An assurance case can show that assurance is
being managed throughout the system life cycle and how that is being done.

B-5

• 4c(1) says, “Reduce vulnerabilities in the system design through system security
engineering.” An assurance case can show how the system design reduces
vulnerabilities.

5. NIST Cybersecurity Risk Management Framework (RMF) / DoDI
8510.01

The NIST Cybersecurity Risk Management Framework (RMF) expressly discusses
assurance cases in [NIST SP 800-53A]. We first provide a brief overview and then briefly
discuss that material.

NIST Special Publication 800-37 [NIST SP 800-37] was developed to transform “the
traditional Certification and Accreditation (C&A) process into the six-step Risk
Management Framework (RMF).” Three of its key steps are to select, implement, and
assess security controls. It also states that “Information security requirements are satisfied
by the selection of appropriate management, operational, and technical security controls
from NIST Special Publication 800-53.”

NIST Special Publication 800-53 [NIST 800-53] provides “guidelines for selecting
and specifying security controls for organizations and information systems.” In particular,
it provides a “security controls catalog,” a list of many potential security controls organized
into families. No single set of security controls would be appropriate to all systems. NIST
SP 800-53 addresses this by identifying baseline controls, which are “the starting point for
the security control selection process.” NIST SP 800-53 identifies three security control
baselines “corresponding to the low-impact, moderate-impact, and high-impact
information systems.”

DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD Information
Technology (IT), establishes “the RMF for DoD IT” [DoDI 8510.01]. However, the DoD
and intelligence community use a finer-grained approach to selecting controls. As
described in Committee on National Security Systems (CNSS) Instruction 1253, system
requirements are divided into confidentiality, integrity, and availability, and for each
division the impact is selected as being low, medium, or high. These values then determine
the recommended set of baseline controls. [CNSSI 1253]

NIST SP 800-53 expressly defines the term “assurance case” (as “A structured set of
arguments and a body of evidence showing that an information system satisfies specific
claims with respect to a given quality attribute.”). However, much more discussion about
using assurance cases with the RMF is included in its companion document NIST SP 800-
53A [NIST SP 800-53A].

NIST SP 800-53A discusses an assurance case as a fundamental construction. Its
Section 2.3 discusses what an assurance case is and its relationship to the RMF, saying,
“Building an effective assurance case for security and privacy control effectiveness is a

B-6

process that involves (i) compiling evidence from a variety of activities conducted during
the system development life cycle… [and] (ii) presenting this evidence in a manner that
decision makers are able to use effectively in making risk-based decisions about the
operation or use of the system. The evidence described above comes from the
implementation of the security and privacy controls in the information system and inherited
by the system (i.e., common controls) and from the assessments of that implementation.
Ideally, the assessor is building on previously developed materials that started with the
specification of the organization’s information security and privacy needs and was further
developed during the design, development, and implementation of the information system.
These materials, developed while implementing security and privacy throughout the life
cycle of the information system, provide the initial evidence for an assurance case…”

6. NIST SP 800-160 volume 1
NIST SP 800-160 volume 1 (Systems Security Engineering: Considerations for a

Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems) [NIST SP
800-160] is a guide that specifically focuses on the use and importance of an assurance
case. It has several purposes, including the following:

• “[to] provide a basis to formalize a discipline for systems security engineering in
terms of its principles, concepts, and activities.”

• “[to] provide considerations and to demonstrate how systems security
engineering principles, concepts, and activities can be effectively applied to
systems engineering activities”

[NIST SP 800-160] is built in part on its “system security engineering framework”
which is divided into three parts (see the illustration from that document in Figure 13):

• “The problem context defines the basis for an acceptably and adequately secure
system…”

• “The solution context transforms the stakeholder security requirements into
design requirements for the system; addresses all security architecture, design,
and related aspects necessary to realize a system that satisfies those
requirements; and produces sufficient evidence to demonstrate that those
requirements have been satisfied.”

• “The trustworthiness context is a decision-making context that provides an
evidence-based demonstration, through reasoning, that the system-of-interest is
deemed trustworthy based upon a set of claims derived from security objectives.
The trustworthiness context consists of:

– Developing and maintaining the assurance case; and

– Demonstrating that the assurance case is satisfied.”

B-7

Figure 13. Systems Security Engineering Framework of NIST SP 800-160

It also notes, “The trustworthiness context is grounded on the concept of an assurance
case. An assurance case is a well-defined and structured set of arguments and a body of
evidence showing that a system satisfies specific claims with respect to a given quality
attribute… An assurance case is used to demonstrate that a system exhibits some complex
emergent property such as safety, security, resiliency, reliability, or survivability. An
effective security assurance case contains foundational security claims that are derived
from stakeholder security objectives, credible and relevant evidence that substantiates the
claims, and valid arguments that relate the various evidence to the supported security
claims. The result provides a compelling statement that adequate security has been
achieved and driven by stakeholder needs and expectations.”

7. ISO/IEC/IEEE 12207
ISO/IEC/IEEE 12207 [ISO 12207:2017] specifically discusses its relationship with a

security assurance case and assurance cases for any purpose:

• Section E.6 (process view for software assurance) “provides an example of
applying the process viewpoint to yield a process view for software assurance…
The software assurance characteristics, their extent of achievement, and related
information may support a software assurance claim, as described in
ISO/IEC/IEEE 15026.” Later in the same section, it notes that “the
Measurement process (6.3.7), in its entirety, provides a common platform for
collecting information about the software assurance claims, strategies, and
evidence, sometimes referred to as an assurance case.”

B-8

• Section F.3 notes that “Other necessary models can include some of these
characteristics [of importance to stakeholders]... a software assurance case,
regarded as a model, can help in deducing potential architectural mitigations to
minimize operational risks (mission loss due to exploited security
vulnerabilities) related to critical concerns and functions.”

This standard defines a set of processes (not phases or stages). As it notes,
“implementation of this document typically involves selecting and declaring a set of
processes suitable to the organization or project. There are two ways that an
implementation can be claimed to conform to the provisions of this document — full
conformance and tailored conformance… Claiming ‘full conformance to tasks’ asserts that
all of the requirements of the activities and tasks of the declared set of processes are
achieved. Alternatively, claiming ‘full conformance to outcomes’ asserts that all of the
required outcomes of the declared set of processes are achieved.” Here are some examples
where an assurance case can support 12207, organized by its processes:

• System analysis process:

– Key outcomes are that “system analysis assumptions and results are
validation” and that “system analysis results are provided for decisions.” A
good assurance case clearly identifies assumptions, and results for validation
can be provided for decisions.

– The key activity “perform system analysis” is supported by “review the
analysis results for quality and validity” and “record the results of system
analysis.” An assurance case is itself an analysis, and it provides a way to
organize and record the results of other analyses.

• Risk management process:

– A key outcome is “appropriate treatment is implemented.” An assurance case
can show what depends on the treatments (and therefore that they are
appropriate).

– Similarly, a key activity is to “treat risk” with the task “implement risk
treatment alternatives for which the stakeholders determine that actions should
be taken to make a risk acceptable.” An assurance case enables stakeholders
to discuss and make that determination so that they can gain agreement on
what actions should be taken.

ISO/IEC/IEEE 15288:2015, aka 15288, “establishes a common framework of process
descriptions for describing the life cycle of systems created by humans” [ISO 15288:2015].
Because 12207 uses the same processes as 15288, the examples shown here generally apply
to 15288 as well.

C-1

Appendix C.
Trusted Systems and Networks (TSN) Analysis

Trusted Systems and Networks (TSN) analysis is a rigorous approach to identifying
addressing and countering risks, including those from malicious components, as presented
in the Defense Acquisition Guidebook (DAG) [DoD DAG] in support of [DoDI 5200.44].
This approach can be especially valuable for critical systems. TSN analysis includes
criticality analysis (CA), which identifies mission critical functions and critical
components. It also includes vulnerability assessment, risk assessment, and protection
measure selection. This appendix provides a brief summary of the approach.

A rigorous approach to identifying addressing and countering risks, including those
from malicious components, is presented in [DoDI 5200.44] and the Defense Acquisition
Guidebook (DAG) [DoD DAG]. This approach can be especially important for critical
systems, and is also called “Trusted Systems and Networks (TSN) Analysis.” As this
approach especially impacts design, we have placed this as part of the design process within
this assurance case pattern. It involves CA (which identifies mission critical functions and
critical components), vulnerability assessment, risk assessment, and protection measure
selection.

This approach begins with CA: an “end-to-end functional decomposition performed
by systems engineers to identify mission critical functions and components. Includes
identification of system missions, decomposition into the functions to perform those
missions, and traceability to the hardware, software, and firmware components that
implement those functions. Criticality is assessed in terms of the impact of function or
component failure on the ability of the component to complete the system mission(s)”
[DoDI 5200.44]. CA identifies mission critical functions and critical components; a critical
component “is or contains information and communications technology (ICT), including
hardware, software, and firmware, whether custom, commercial, or otherwise developed,
and which delivers or protects mission critical functionality of a system or which, because
of the system’s design, may introduce vulnerability to the mission critical functions of an
applicable system” [DoDI 5200.44].

Of course, just identifying mission critical functions and critical components (and
thus the consequence of loss) is not enough. The system should typically be changed
depending on the likelihood of loss and trade-offs that consider cost. Chapter 9 of the he
DAG presents an engineering-driven approach for doing this, which is titled “Trusted

C-2

Software and Networks (TSN) Analysis Methodology,” as illustrated in Figure 14 [DoD
DAG, chapter 9].

Figure 14. TSN Analysis Methodology [DoD DAG, chapter 9]

Vulnerability assessment searches for vulnerabilities, beginning with the mission-
critical functions and associated critical components. Its results, along with a threat
assessment, help determine the likelihood of loss. This likelihood of loss, combined with
the consequence of loss, can then be used to identify potential protection measures and
perform trade-off analysis of those measures. Risk mitigation decisions can then be made
to produce a mitigated risk.

For more information, see [DoD DAG] and [DoDI 5200.44].

R-1

References

[Blanchette 2009a] Blanchette, Jr., Stephen. 2009. “Assurance Cases for Design Analysis
of Complex System of Systems Software.” Proceedings of the AIAA
Infotech@Aerospace Conference. American Institute of Aeronautics and
Astronautics (AIAA). https://arc.aiaa.org/doi/abs/10.2514/6.2009-1921

[Blanchette 2009b] Blanchette, Jr., Stephen. 2009. “Assurance Cases for Design Analysis
of Complex System of Systems Software.” Proceedings of the AIAA
Infotech@Aerospace Conference. American Institute of Aeronautics and
Astronautics (AIAA).
https://resources.sei.cmu.edu/asset_files/Presentation/2009_017_001_22469.pdf

[Bojanova 2016] Bojanova, Irena, Paul E. Black, Yaacov Yesha, and Yan Wu. 2016.
“The Bugs Framework (BF): A Structured Approach to Express Bugs.” Proceedings
of the 2016 IEEE International Conference on Software Quality, Reliability and
Security (QRS). https://ieeexplore.ieee.org/document/7589797

[CAS 2012] National Security Agency (NSA) Center for Assured Software (CAS). 2012.
CAS Static Analysis Tool Study – Methodology.
http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Stud
y%20Methodology.pdf.

[CNSS 1253] Committee on National Security Systems (CNSS). n.d. Security
Categorization and Control Selection for National Security Systems.
http://www.dss.mil/documents/CNSSI_No1253.pdf

[CNSS 4009] Committee on National Security Systems (CNSS). n.d. National
Information Assurance Glossary. CNSS Instruction No. 4009.

[CWE 2017] Common Weakness Enumeration (CWE). 2017. Scoring CWEs.
https://cwe.mitre.org/scoring/index.html

[Cybersecurity Strategy 2015] Department of Defense. 2015. Outline and Guidance for
Acquisition Programs' Cybersecurity Strategies.
https://www.dau.mil/cop/cybersecurity/dau%20sponsored%20documents/dcio%20c
ybersecurity%20strategy%20memo%2010nov15.pdf

[DoD CTT] Department of Defense, Deputy Assistant Secretary of Defense
Developmental Test and Evaluation (DT&E). The Department of Defense Cyber
Table Top Guidebook. Version 1.0. July 2, 2018. https://www.acq.osd.mil/dte-
trmc/docs/The%20DoD%20Cyber%20Table%20Top%20Guidebook%20v1.pdf

[DoD DAG] Department of Defense. Defense Acquisition Guidebook (DAG).
https://www.dau.mil/tools/dag

[DoDI 5000.02] Department of Defense. 2015. “DoD Instruction (DoDI) 5000.02:
Protection of Mission Critical Functions to Achieve Trusted Systems and Networks

http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://cwe.mitre.org/scoring/index.html

R-2

(TSN),” (Incorporating Change 3, August 10, 2017).
http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002_dodi_20
15.pdf?ver=2017-08-11-170656-430

[DoDI 5200.44] Department of Defense. 2012. “DoD Instruction 5200.44: Protection of
Mission Critical Functions to Achieve Trusted Systems and Networks (TSN),”
(Incorporating Change 3, October 15, 2018).
https://www.acq.osd.mil/se/initiatives/init_pp-sse.html

[DoDI 8510.01] Department of Defense. 2014. “DoD Instruction 8510.01: Risk
Management Framework (RMF) for DoD Information Technology (IT),”
(Incorporating Change 2, July 28, 2017).
http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/851001_2014.pd
f

[Goodenough 2014] Goodenough, John, Howard F. Lipson, and Charles B. Weinstock.
2014. Arguing Security - Creating Security Assurance Cases. https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-
assurance-cases

[ISO 12207:2017] ISO/IEC/IEEE. 2017. “ISO/IEC/IEEE 12207:2017, Systems and
software engineering—Software life cycle processes.”
https://www.iso.org/standard/63712.html

[ISO 15026-2:2011] ISO. 2011. “ISO 15026-2:2011, Systems and software
engineering—Systems and software assurance—Part 2: Assurance case.”
https://www.iso.org/standard/52926.html

[ISO 15288:2015] ISO/IEC/IEEE. 2015. “ISO/IEC/IEEE 15288:2015, Systems and
software engineering—System life cycle processes.”
https://www.iso.org/standard/63711.html

[Lipson 2014] Lipson, Howard F. and Charles B. Weinstock. 2014. Evidence of
Assurance: Laying the Foundation for a Credible Security Case. https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/evidence-assurance-laying-
foundation-credible-security-case

[MITRE 2017] MITRE. January 18, 2017. Enumeration of Technical Impacts.
https://cwe.mitre.org/cwraf/enum_of_ti.html

[MITRE 2018] MITRE. April 2, 2018. Prioritizing Weaknesses Based Upon Your
Organization's Mission. https://cwe.mitre.org/community/swa/priority.html

[Moore 2001] Moore, Andrew P, Robert J. Ellison, and Richard C. Linger. 2001. “Attack
Modeling for Information Security and Survivability” (Technical Note CMU/SEI-
2001-TN-001).
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5417

[NDIA 2008] National Defense Industrial Association (NDIA) System Assurance
Committee. 2008. Engineering for System Assurance.
https://www.acq.osd.mil/se/docs/sa-guidebook-v1-oct2008.pdf

https://www.acq.osd.mil/se/initiatives/init_pp-sse.html

R-3

[NIST SP 800-37] NIST. Updated 2014-06-05 (original February 2010). NIST Special
Publication 800-37 Rev. 1: Guide for Applying the Risk Management Framework to
Federal Information Systems: a Security Life Cycle Approach.
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final

[NIST SP 800-39] NIST. 2011. NIST Special Publication (SP) 800-39: Managing
Information Security Risk. 2011-03.
http://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-39.pdf

[NIST SP 800-53] NIST. 2015. NIST Special Publication (SP) 800-53 rev 4: Security and
Privacy Controls for Federal Information Systems and Organizations (Includes
updates to 2015-01-22). https://csrc.nist.gov/publications/detail/sp/800-53/rev-
4/final

[NIST SP 800-53A] NIST. 2014. NIST Special Publication (SP) 800-53A rev 4.
Assessing Security and Privacy Controls in Federal Information Systems and
Organizations: Building Effective Assessment Plans.
https://csrc.nist.gov/publications/detail/sp/800-53a/rev-4/final

[NIST SP 800-160] Ross, Ron, Michael McEvilley, and Jane Carrier Oren. 2016. NIST
Special Publication (SP) 800-160. Systems Security Engineering: Considerations for
a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems,
volume 1 (Updated 2018-03-23). https://csrc.nist.gov/publications/detail/sp/800-
160/vol-1/final

[OMG 2018] Object Management Group (OMG). March 2018. Structured Assurance
Case Metamodel (SACM). https://www.omg.org/spec/SACM/2.0

[Open Group 2013] The Open Group. July 2013. The Dependability through
Assuredness™ (O-DA) Framework. https://publications.opengroup.org/c13f

[OSD 2017] Department of Defense (DoD) Software Assurance (SwA) Community of
Practice (CoP) Contract Language Working Group. November 2017. Incorporating
Software Assurance into Department of Defense Acquisition Contracts.
https://www.acq.osd.mil/se/docs/2017-11-15-SwA-Contracts.pdf

[PPP 2011] Deputy Assistant Secretary of Defense, Systems Engineering. July 2011.
Program Protection Plan Outline & Guidance, Version 1.0.
https://www.acq.osd.mil/se/initiatives/init_pp-sse.html

[Rhodes 2010] Rhodes, Thomas, Frederick Boland, Elizabeth Fong, and Michael Kass.
2010. “Software Assurance Using Structured Assurance Case Models.” Journal of
Research of the National Institute of Standards and Technology 115(3): 209–216.
doi: 10.6028/jres.115.013.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548534/

[Royce 1970] Royce, Winston. 1970. Managing the Development of Large Software
Systems.

[Saltzer 1975] Saltzer, Jerome “Jerry” H., and Michael D. Schroeder. September 1975.
“The Protection of Information in Computer Systems.” Proceedings of the IEEE,
63(9):1278–1308,

https://www.omg.org/spec/SACM/2.0

R-4

https://www.acsac.org/secshelf/papers/protection_information.pdf or
https://ieeexplore.ieee.org/document/1451869/

[Wheeler 2016] Wheeler, David A. and Amy H. Henninger. November 2016. State-of-
the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and
Evaluation (IDA Paper P-8005). https://www.acq.osd.mil/se/docs/P-8005-SOAR-
2016.pdf

[Wheeler 2017] Wheeler, David A. September 18, 2017. "How to Develop Secure
Applications: The BadgeApp Example." (Video).
https://www.youtube.com/watch?v=5a5D4d6hcEY

[Wheeler 2018a] Wheeler, David A. July 18, 2018. BadgeApp Security: Its Assurance
Case. Released under the Creative Commons Attribution 3.0 International (CC BY
3.0) license or later.
https://github.com/coreinfrastructure/best-practices-
badge/blob/master/doc/security.md

[Woody 2018] Woody, Carol, “Automated Decision Support with an Assurance Case,”
October 17, 2018, Proceedings of the Development of Trustworthy and Secure
Systems, Worcester, MA.

https://www.acsac.org/secshelf/papers/protection_information.pdf

AA-1

Acronyms and Abbreviations

ACSE Assurance and Safety Case Environment
ASLR Address Space Layout Randomization
CA Criticality Analysis
CAE Claims, Arguments and Evidence
CAPEC Common Attack Pattern Enumeration and Classification
CDN Content Distribution Network
CI Continuous Integration
CII Core Infrastructure Initiative
CNSS Committee on National Security Systems
CSP Content Security Policy
CTT Cyber Table Top
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
DAG Defense Acquisition Guidebook
DoD Department of Defense
DoDI Department of Defense Instruction
DoS Denial of Service
DRY Don’t Repeat Yourself
EMD Engineering & Manufacturing Development
FLOSS Free/Libre/Open Source Software
GCM Galois/Counter Mode
GSN Goal Structuring Notation
HTTPS Hypertext Transfer Protocol Secure
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
ICT Information and Communications Technology
IoT Internet of Things
ISO International Organization for Standardization (sic)
KPP Key Performance Parameter
MITM Man-in-the-middle
NDAA National Defense Authorization Act
NDIA National Defense Industrial Association
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
OMG Object Management Group
OSS Open Source Software
OWASP Open Web Application Security Project
P.L. Public Law
RMF Risk Management Framework
S&S Saltzer and Schroeder

AA-2

SACM Structured Assurance Case Metamodel
SANS SysAdmin, Audit, Network and Security
SOAR State-of-the-Art Resources
SP Special Publication
SwA Software Assurance
TMRR Technology Maturation & Risk Reduction
TSN Trusted Systems and Networks
URL Universal Resource Locator

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-12-2018 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Sample Security Assurance Case Pattern HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler AU-5-3856
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

P-9278 Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

OUSD(R&E) Thomas D. Hurt
OUSD(R&E) Enterprise Engineering
4800 Mark Center Dr., Suite 16D-08
Alexandria, VA 22350-3600

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: E. Kenneth Hong Fong
14. ABSTRACT

Essentially all systems with software should address security. However, there is no single “magic bullet” that makes software secure, because security is
an emergent property of a system. Tracking and managing the application of the various techniques across the software corpus and throughout the software
life cycle can be overwhelming. An assurance case is a widely-recommended practical alternative to other approaches for managing the assurance activities.
An assurance case “includes a top-level claim for a property of a system or product (or set of claims), systematic argumentation regarding this claim, and
the evidence and explicit assumptions that underlie this argumentation.” [ISO 15026-2:2011]. Since an assurance case is systematic, it is much easier for
people to determine if important areas have been adequately covered, and to understand the ramifications of different decisions. Maintaining an assurance
case for security properties (a “security assurance case”) is a simple idea, but many have found it difficult to create a security assurance case because of
the limited number of sample patterns and worked examples. This document provides a sample security assurance case pattern, based on a publicly-
available assurance case of a real commercial system. This document also shows how this pattern can be applied to a real system. We hope that many
system/software developers and approving authorities will find this sample pattern and application to be a useful place to start when developing their own
assurance cases. This document also discusses changes that could be made to deal with different kinds of applications, such as Internet of Things (IoT) or
weapon systems. The sample security assurance case pattern provided here is for a system that only requires moderate assurance; higher levels of assurance
would call for more rigor. This pattern can make it much easier to create a security assurance case.

15. SUBJECT TERMS

Security, assurance, software assurance, secure software, trust, trustworthy, trustworthiness, cybersecurity, assurance case, security assurance case, sample
assurance case, example, pattern, developing secure software, building security in, stakeholders, ISO 15026, life cycle, assurance case pattern, assurance
case guidelines, claims, arguments, evidence, CAE, goal structuring notation, GSN, ISO 12207, risk management framework, weaknesses, vulnerabilities,
rationale, Structured Assurance Case Metamodel, design principles, Saltzer and Schroeder, threat model, attack model, OWASP, OWASP top 10,
weakness classes, CWE/SANS top 25, continuous integration, hardening, Address Space Layout Randomization, Content Security Policy (CSP), coding
guidelines, reuse, supply chain, processes, phases, stages

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

60

19a. NAME OF RESPONSIBLE PERSON
Thomas D. Hurt

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)
 571-372-6129 Unclassified Unclassified Unclassified

	1. Introduction
	2. Sample Assurance Case Pattern
	A. Top Level
	B. Life Cycle Processes
	1. Security in Design
	a. Threat (Attack) Model Analyzed
	b. Trusted Systems and Networks (TSN) Analysis
	c. Secure Design Principles Applied
	d. Availability through Scalability
	e. Memory-Safe Programming Languages

	2. Security in Integration and Verification
	3. Security in Transition and Operation
	4. Security in Maintenance
	5. Certifications and Controls

	C. Implementation
	1. Common Implementation Errors Countered
	2. Common Misconfigurations Countered
	3. Hardening Applied
	4. Securely Reuse Software

	D. Other Life Cycle Processes
	E. Real Assurance Cases Include Supporting Text
	F. Determining Adequacy

	3. Sample Assurance Case Application
	A. Top Level
	1. Sample Supporting Text: Email Addresses
	2. Sample Supporting Text: Data Modification Requires Authorization.
	3. Sample Graphical Representation That Data Modification Requires Authorization

	B. Life Cycle Processes
	C. Implementation
	D. Other Life Cycle Processes

	4. Conclusions
	Appendix A . Processes Are Neither Phases nor Stages
	Appendix B . How an Assurance Case can Support Other Documents and Processes
	1. DoD Instruction 5000.02
	2. DoD Program Protection Plan (PPP)
	3. DoD Cybersecurity Strategy
	4. DoD Instruction 5200.44
	5. NIST Cybersecurity Risk Management Framework (RMF) / DoDI 8510.01
	6. NIST SP 800-160 volume 1
	7. ISO/IEC/IEEE 12207

	Appendix C . Trusted Systems and Networks (TSN) Analysis

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	P-9278 - SF 298 - DF2.pdf
	Form Approved OMB No. 0704-0188

	Blank Page

