

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

 Assessment of Graph Databases as a
Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS)
Portal Implementation:

Final Report

 Francisco L. Loaiza-Lemos, Project Leader

Dale Visser

Russell J. Smith

March 30, 2018

Approved for public

release; distribution is

unlimited.

IDA Document

D-8980

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under contract
HQ0034-14-D-0001, Task BC-5-4277, “Assessment of Graph Databases as a Viable
Materiel Solution for the Army's Dynamic Force Structure Portal Implementation,” for
Army CIO/G-6 (SAIS-AOD). The views, opinions, and findings should not be construed
as representing the official position of either the Department of Defense or the
sponsoring organization.

Acknowledgments
Steven P. Wartik

For more information:

Francisco L. Loaiza-Lemos, Project Leader
floaiza@ida.org, 703-845-687

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice

© 2018 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:mmyers@ida.org

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-8980

Assessment of Graph Databases as a
Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS)
Portal Implementation:

Final Report

Francisco L. Loaiza-Lemos, Project Leader

Dale Visser

Russell J. Smith

i

Executive Summary

This document was prepared by the Institute for Defense Analyses (IDA) in support

of the FY16 Army analysis “Assessment of Graph Databases as a Viable Materiel Solution

for the Army’s Dynamic Force Structure (DFS) Portal Implementation.”

This document constitutes the final report under the project description and addresses

the analysis’ objective of assessing the maturity and applicability of graph database

technology as a practicable materiel solution that reflects legacy system realities and that

can effectively and efficiently deliver the needed at-rest and in-motion force structure

products for the planned Army DFS portal.

Specifically, the final report provides a summary of the technical assessments

conducted during the execution of the project, the associated conclusions and

recommendations, and a short exploration of additional technologies and data

representations that may be appropriate for the implementation of the planned Army DFS

Portal. The IDA team applied rapid prototyping techniques as part of the continuing

evaluation of technologies covered during the analysis. The team used data collected during

those activities to continue maturing the decision process needed to determine the best-of-

breed options. The assessments leverage the metrics elaborated in preceding phases of the

analysis, which were documented in the previous three deliverables. 1,2,3

Background

The final phase of the analysis is aligned with the goals and objectives of the

Department of Defense (DoD) as expressed in its Global Force Management Data Initiative

(GFM DI), whereby DoD is seeking the standardization of all authorized force structure

data so that it can be understandable to, and usable by, both warfighting and business

1
 IDA Document D-8345, Assessment of Graph Databases as a Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS) Portal Implementation: Part 1, Preliminary Characterization of Data

Sources, Representation Options, Test Scenarios and Objective Metrics, F. Loaiza, D. Visser, February

24, 2017.

2
 The second deliverable was IDA Document D-8516, Assessment of Graph Databases as a Viable

Materiel Solution for the Army’s Dynamic Force Structure (DFS) Portal Implementation: Part 2,

Technical Feasibility, Affordability, and Architecture Integration Options, F. Loaiza, D. Visser, June 1,

2017.

3
 The third deliverable was IDA Document D-8852, Assessment of Graph Databases as a Viable Materiel

Solution for the Army’s Dynamic Force Structure (DFS) Portal Implementation: Part 3, Risks,

Mitigation Approach, and Roadmap, F. Loaiza, R. Smith, December 29, 2017.

ii

systems across the DoD Enterprise.4 As noted in the previous deliverables under this

project, the challenge in all of the related activities is the harmonization of data that

currently resides in a large number of relational legacy systems so that it can be readily

used in the generation of at-rest and in-motion force structure products. An additional

challenge is to identify those technologies that can readily deliver the type of performance

needed to implement interactive web-based solutions.

The main motivation for exploring graph database technology has been its potential

for cost reduction along with the procedural simplicity of an approach that directly recasts

the source data from legacy relational systems in the form of Resource Description

Framework (RDF) triples,5 collects them in a graph data store, and then uses the triples to

generate the force structure products. However, as has been noted in the previous phases

of the analysis, without special-purpose hardware the performance of standard graph

database implementations may not be adequate for interactive human-in-the-loop

implementations. In this final phase of the analysis, therefore, we explored a thread already

initiated in the third deliverable—the use of key:value pair representations, such as the one

used in JavaScript Object Notation (JSON) serializations,6 in combination with search

engines that use a record-level inverted index approach, such as the open-source, enterprise

search platform Apache Solr,7 for the purpose of assessing the feasibility of achieving

industry-standard data retrieval times—i.e., less than a second per query—even in the

absence of special-purpose hardware and software and handling large data volumes.

Document Structure

This document is organized as follows:

1. Section 1 presents a summary of the analytical results from the previous three

deliverables, together with the main conclusions and recommendations that still

remain valid at the end of the study.

2. Section 2 documents the use of record-level inverted index search engines, such

as Apache Solr, to power the fast data retrieval operations needed in the planned

Army DFS Portal implementation.

3. Section 3 provides the final set of conclusions and recommendations for the

whole study.

4
 http://www.prim.osd.mil/init/init_osdmanpower.html

5
 https://www.w3.org/RDF/

6
 “The JSON Data Interchange Format” (PDF). ECMA International. October 2013. Retrieved 23

September 2016.

7
 http://lucene.apache.org/solr/

http://www.prim.osd.mil/init/init_osdmanpower.html

iii

4. Appendix A covers in detail the results obtained when using JSON-style

key:value pair data representations, coupled with the inverted index search

engine Apache Solr. Specifically, the discussion highlights the potential offered

by this combination to achieve substantial improvements in the efficiency of

data access and retrieval when dealing with highly nested data as it exists in

force structure representations. The experimental results employ the sample data

from the “six degrees of separation” (SDOS) use case that the IDA team used in

earlier phases of the study to stress the performance of open source and

commercial implementations.

5. Appendix B contains Python and Hypertext Preprocessor (PHP) scripts that

were used for the tests described in Appendix A. The code is licensed for free

reuse, and it is intended to help other groups in their evaluations.

Scope

As in the previous deliverables, the results described in this document do not address

any of the complexities inherent in the policies and procedures embedded in the “as-is”

systems that currently support the population of the Army Organization Server under the

GFM DI initiative, which would come into play for scenarios in which the source data to

be converted into RDF triples is in the form of XML instance documents that conform to

the GFM DI specifications. It is, therefore, assumed that those XML instance documents

can both be generated and would be accessible as inputs for subsequent manipulations

required by the graph database approach.

Although other serializations are currently supported by Apache Solr, the conceptual

simplicity of the JSON implementation, as well as the ease with which it can be

transformed into other representations, such as RDF triples, or even SQL statements,

together with its broad acceptance in the context of web application development, made

this an optimal choice for assessing the feasibility of the approach. The IDA team,

therefore, feels that no loss of generality is incurred by narrowing the scope of the

assessment to just one implementation of the key:value pair data representation.

As noted in the preceding phases of the study, all tests were performed using off-the-

shelf, standard computer equipment. The assessment of potential benefits associated with

specialized hardware and software alternatives for use in combination with graph databases

was deemed outside of the scope of the analysis, mainly because so many other components

of the full-solution architecture for the planned Army DFS portal are still undefined.

Finally, the data sets used in the analysis, as well as the reported performance of the

various applications tested, are intended only to demonstrate the feasibility of the proposed

approaches for how to leverage the technologies being assessed—e.g., graph databases,

iv

alternate data representations, inverted index search engines—and should not be

interpreted as reference performance benchmarks for actual implementation.

Analytical Approach

The work performed for this phase of the analysis concentrated on answering the

following questions:

 What are the lessons learned from the previous phases of the analysis and how

can they help inform the decision process for determining the optimal mix needed

to implement the planned Army DFS portal?

 How can other data representations of the RDF triples content be leveraged to

implement a semantic layer that aids in the harmonization of data from multiple

disparate sources?

 What additional technologies can be brought to bear so that the potential benefits

associated with the use of graph databases will not be negated by poor data access

and retrieval performance, specifically, in the context of interactive web

applications?

 What additional steps should be taken to facilitate the adoption of graph databases

as part of the overall solution architecture supporting the Army DFS Portal?

 What are the enterprise-wide implications for the Army of adopting a graph

database approach?

Conclusions and Recommendations

Based on the analytical work performed during the final phase of the study, the IDA

team concluded the following:

 Search engines – such as Apache Solr – that leverage inverted index data structures

and can store data expressed in the form of key:value pairs have achieved a high

degree of maturity and acceptance in the commercial world. Their ability to handle

data volumes of the magnitude expected for the planned Army DFS portal is

adequate, even when the Solr server runs on standard hardware.

 Interactive web applications that use an Apache Solr server loaded with RDF

triples converted into JSON documents made up of key:value pairs are feasible,

and the data retrieval performance observed in preliminary tests is consistently

well under one second per query, thus easily satisfying industry standards for

interactive web application development and use.

For the final phase of the study, the recommendations are as follows:

v

 The solution architecture for the Army DFS portal should include technologies such

as inverted index search engines, coupled with data representations compatible with

such engines, to minimize the risk of the poor data retrieval performance associated

with most graph database implementations.

 Processes for transforming force structure data from one representation into another

should be identified early in the planning for the Army DFS to ensure that each of

the technologies included in the solution architecture can be optimally exploited.

 Simulation techniques should be employed to assess the impact of hybrid solution

architectures on the concept of operations of the Army DFS portal.

vii

Contents

1. Summary of Previous Conclusions and Recommendations 1-1

A. First Deliverable: Preliminary Characterization of Data Sources,

Representation Options, Test Scenarios, and Objective Metrics 1-1

B. Second Deliverable: Technical Feasibility, Affordability, and Architecture

Integration Options .. 1-2

C. Third Deliverable: Risks, Mitigation Approach, and Roadmap 1-3

2. Leveraging key:value Pair Representations to Improve Search Performance 2-1

A. Background ... 2-1

B. The Inverted Index Data Structure .. 2-1

C. The “Six Degrees of Separation” (SDOS) Use Case in JSON 2-3

D. Example of Scalability and Performance – Apache Solr 2-6

1. Data Loading Performance .. 2-6

2. Data Retrieval Performance .. 2-7

E. Force Structure Data as a Variant of the SDOS Use Case 2-8

3. Conclusions and Recommendations .. 3-1

A. Conclusions ... 3-1

B. Recommendations ... 3-1

Appendix A. Combining Key:Value Pair Data Representations with Fast Inverted

Index Search Engines ... A-1

Appendix B. Sample Code Used for Testing Solutions Based on the Apache Solr

Search Engine ...B-1

A. Preparation of the JSON Documents ...B-2

B. Example PHP Web Application ..B-11

References ..R-1

Acronyms and Abbreviations .. AA-1

viii

Figures and Tables

Figure 2-1. Notional Depiction of an Inverted Indexing Approach 2-2

Figure 2-2. Representation of the “Six Degrees of Separation” (SDOS) Use Case as

JSON Documents .. 2-3

Figure 2-3. Notional Inverted Index Set for the SDOS Use Case 2-6

Figure 2-4. Example of Time Required to Load Data Sets into Apache Solr Server 2-7

Figure 2-5. Time to Access and Retrieve Data for the “TYLER knows DORIAN”

Query .. 2-7

Figure 2-6. Notional Example of Force Structure Data .. 2-9

Figure A-1. Screen Capture of the Apache Solr Server Admin Interface with All 128

Million JSON Documents Loaded ... A-2

Figure A-2. Results for the SDOS01 Query Using the Solr Admin Interface A-3

Figure A-3. Results for the SDOS02 Query Using the Solr Admin Interface A-4

Figure A-4. Retrieval Time for Cached Queries in the Apache Solr Server A-4

Figure A-5. Apache Solr Server Data Retrieval Times for the SDOS Use Case............ A-5

Figure A-6. Prolog Data Retrieval Times for the SDOS Use Case and 8 Million

Clauses ... A-6

Figure A-7. Web Applications Using the Solr Server as Backend Data Store A-8

Figure A-8. Data Retrieval Performance for Web Applications Using the Solr Server

as Backend Data Store ... A-9

Figure B-1. Snippet of the Sorted PersonAssociation Table ...B-2

Figure B-2. Example of a JSON Document Containing All the Key:Value Pairs

Needed for the SDOS Use Case Test..B-7

Table 1-1. Summary of Conclusions and Recommendations for the First

Deliverable .. 1-1

Table 1-2. Summary of Conclusions and Recommendations for the Second

Deliverable .. 1-3

Table 1-3. Summary of Conclusions and Recommendations for the Third

Deliverable .. 1-4

1-1

1. Summary of Previous Conclusions and

Recommendations

This chapter reviews the conclusions and recommendations made during the

preceding phases of the analysis. The details of each of the underlying analytical results

encapsulated in the summarizations provided here are available in the respective

deliverables.8

A. First Deliverable: Preliminary Characterization of Data Sources,

Representation Options, Test Scenarios, and Objective Metrics

Table 1-1 summarizes the conclusions and recommendations made during the first

phase of the analysis. The first phase was concentrated on discovering the potential benefits

and risks associated with the use of a graph database approach for the planned Army DFS

portal. The analytical results documented possible risks and whether any of them could rise

to the level of a “show stopper” for the approach under consideration. The IDA team also

attempted to identify the most likely types of scenarios in which the graph database

approach could be used.

Table 1-1. Summary of Conclusions and Recommendations for the First Deliverable

Conclusions

Subject Comment

 Availability and

Maturity of Graph

Database

Implementations

 A substantial number of offerings, both proprietary and open source, are available for

graph database implementations. Some of these implementations are quite robust, have

strong user base support, and have been in existence for quite some time.

 Applicable

Scenarios for

Graph Database

Use

 A graph database approach can work in all scenarios in which legacy source data must

be transformed into a common representation that is easy to load and manipulate for the

purpose of generating force structure products. However, the degree of effort is arguably

the lowest where the legacy relational database can be programmatically accessed.

Intermediate data dumps in the form of raw text files, XML instance documents, or CSV

files add complexity to the approach. This in turn may also increase the risk.

 Fitness of objective

Metrics

 The objective metrics developed in this phase of the study provide a good road map for

evaluating proprietary and open source graph database implementations. However,

specialized testing with software and hardware specifically designed to power high-traffic

portals should be conducted before the final determination on whether or not to adopt a

graph database approach.

8
 See footnotes 1, 2 and 3.

1-2

Recommendations

Subject Comment

 Good Performance

and Robust APIs

 Both proprietary and open source graph database implementations need to be thoroughly

evaluated with respect to their performance for loading and retrieving data in a high-traffic

portal and to the robustness of their application program interfaces (APIs), specifically with

respect to their support for commonly used scripting languages, e.g., Python, Java, etc.

 Flexible and Broad

Risk Mitigation

 Risk mitigation strategies must be developed to cope with all potential risks that may arise

from the adoption of graph database technology as a materiel solution for the planned

Army DFS portal. In some cases, and for specific purposes, the solution architecture may

require a mixture of technologies that better cope with the known weaknesses of the

current graph database implementations.

Finally, the analysis explored applicable objective metrics that should be considered

when assessing the maturity and applicability of the graph database approach for an

implementation of the planned Army DFS portal. As noted in the recommendations, under

the assumption that the majority of the applications to be developed in support of the

planned Army DFS portal would include interactive web applications, the IDA team

recommended emphasizing both the performance characteristics offered by the available

implementations and developing a broad and flexible risk mitigation strategy.

B. Second Deliverable: Technical Feasibility, Affordability, and

Architecture Integration Options

Table 1-2 summarizes the recommendations made after the second phase of the analysis.

The second phase was concentrated on understanding whether or not the data structures

used by the Army legacy relational databases would be easily re-expressed as subgraphs,

so that their data content could then be placed in RDF triple stores – one of the most

common implementations of the graph database paradigm.

As part of the analysis, the IDA team explored the choices available for developing a

time- and cost-efficient data conversion process from relational tables into RDF triples for

the data resident in Army legacy relational data stores. The team also identified choices

available for representing Army force structure legacy data in the form of RDF triples that

would negatively affect data access and retrieval performance. Finally, the IDA team

investigated the options for a solution architecture that can support the integration of graph

databases into the mix of technologies needed to implement the planned Army DFS Portal.

1-3

Table 1-2. Summary of Conclusions and Recommendations for the Second Deliverable

Conclusions

Subject Comment

 RDF triples data

representation

capabilities

 All data structures likely to be found in pertinent Army legacy relational data stores

– namely, those containing the source force structure data needed to populate the

planned Army DFS Portal – can be re-expressed in a straightforward manner

using RDF triples. The difference in the degree of complexity of the transformation

chosen for the relational data structures obeys strategic considerations, such as

reuse and expansion of the data to satisfy novel and emerging uses.

 Re-expressing the

semantics of relational

data stores in graph

databases

 A “semantic layer” in the form of an appropriately sized ontology is quite useful for

organizing the resources in an RDF triple store in the same way that data is

bundled in relational data stores under the concept of a “table.” The semantic layer

could also be used to retain traceability back to the data sources.

 Enhancing data retrieval

performance

 Certain types of data structures common in relational data stores can lead to very

poor data retrieval performance – such as in the canonical example of multiple

layers of node dependencies found in networks which has been popularized under

the rubric of “six degrees of separation.” Pre-filtering and the use of materialized

views essentially eliminate the performance issue in the relational stores, although

they reduce flexibility and add complexity to the physical schema. Similar

approaches can also be used to improve the performance of RDF triple stores, but

the downside implications may be handled more elegantly through judicious use of

federated triple stores and special-purpose hardware and software.

 Impact of DFS portal

concept of operations

on technologies mix.

 The solution architecture options that can support the integration of graph

databases in the mix of technologies needed to implement the planned Army DFS

Portal are generally satisfactory, but a final determination of optimal choices will

require the inclusion and analysis of the concept of operations for the planned

DFS portal and the timelines associated with the key Army information systems.

 Impact of DFS portal

concept of operations

on choice of graph

database

implementation

 The selection of best-of-breed options may be more sensitive to the concept of

operations for the planned DFS portal than to factors of size, scalability, and data

retrieval performance.

Recommendations

Subject Comment

 Evaluation of graph

databases

implementations, as

well as other NoSQL

options

 Continue the evaluation of available graph database implementations, both

proprietary and open source, and expand the scope to include other promising

NoSQL choices.

 Use of rapid prototyping

techniques to identify

optimal choices

 Continue using rapid prototyping techniques to collect performance statistics that

can inform both the selection process of the optimal graph database

implementation and its integration into the mix of technologies needed to

implement the planned Army DFS Portal.

C. Third Deliverable: Risks, Mitigation Approach, and Roadmap

Table 1-3 summarizes the recommendations made during the third phase of the

analysis. The third phase of the analysis was concentrated on obtaining a more definitive

1-4

understanding of the main technical risks associated with the use of graph databases as part

of the technology mix supporting the Army DFS Portal. The IDA team also sought to

define the mitigation approaches that would best preserve the potential benefits associated

with graph databases while minimizing the unavoidable technical risks associated with the

graph database technology. Finally, the analysis explored options regarding available

implementation roadmaps that would be most appropriate in light of all of the risks and

alternatives, as well as key steps needed to facilitate the adoption of graph databases as part

of the overall solution architecture supporting the Army DFS Portal.

Table 1-3. Summary of Conclusions and Recommendations for the Third Deliverable

Conclusions

Subject Comment

 Graph databases main

technical risk

 As briefly noted in the first and second deliverables, the main risk associated

with the adoption of graph databases when compared to relational data

stores in the context of massive graphs is their inferior performance with

respect to data retrieval and complex query execution. For interactive

applications, any data storage and retrieval technology that requires more

than one or two seconds to deliver the answer is unlikely to be a strong

contender in the solution architecture that supports those use cases.

 Emerging risk mitigation

alternatives

 Some proprietary graph database solutions for “big data” are reaching a

sufficient level of maturity to be competitive with relational data stores in

terms of performance. Specifically, the combination of graph databases and

frameworks for distributed storage and processing, such as Apache Hadoop

and Apache Spark, make it possible to efficiently partition very large datasets

to compensate for any slowdowns caused by the size of the graphs.

 Additional ways of capturing

relational data store

semantics

 The idea of a “semantic layer” for organizing the resources in an RDF triple

store can be readily implemented using alternative data representations that

are not only closely related to the graph formalism – and, therefore, can be

readily converted back and forth – but that also can be directly processed

using a programming language (e.g., Prolog).

 Graph databases as the

best alternative to costly

and time consuming

Extraction, Transformation

and Loading (ETL)

 The key rationale for using graph databases is mainly to enable the cost-

effective handling of legacy data, bypassing the laborious and expensive

extraction, transformation, and loading (ETL) associated with traditional

approaches, and said rationale is supported by all the findings obtained so

far.

Recommendations

Subject Comment

 Additional exploration of

alternatives

 Conduct additional comparisons regarding the use of other programming

languages and data representations for the purpose of implementing a

“semantic layer” as part of the graph database solution.

 Explore “big data” options  Explore applicable emerging “big data” solutions with regard to their

applicability in a future implementation of the Army DFS Portal.

2-1

2. Leveraging key:value Pair Representations

to Improve Search Performance

A. Background

As was noted in the previous deliverables, 9 one of the main concerns associated with

the adoption of graph database technology is that most available implementations tend to

be slower than standard relational database engines. This can become problematic when

manipulating large data sets via interactive solutions that use a graph database as their main

back-end data store. In all fairness, it should be noted that there are well-documented

approaches to boosting the performance of graph databases, ranging from using specialized

hardware with large numbers of cores per CPU and big RAM capacity to using software

platforms such as Hadoop, which allow data sets with hundreds of billions of subgraphs to

be optimally partitioned into large numbers of smaller but very efficient computing nodes

that can then operate in parallel.

We also noted in the preceding analytical results that although the data representation

via RDF triples is quite appealing due to its being a well-established standard with broad

support, not only in the commercial but also in the academic world, other data

representations, such as the clauses used in Prolog’s knowledgebases and the serialization

employed in JavaScript Object Notation (JSON) and JSON for Linked Data (JSON-LD),

also offer capabilities that may be optimal for solving some types of similar problems. That

these representations can be easily transformed into one another should also be kept in

mind, since the adoption of RDF as the baseline will not, therefore, automatically negate

the ability to use alternative data representations that may be best suited for specific

processes.

B. The Inverted Index Data Structure

With the preceding background in mind, the IDA team conducted a short review of

leading search engine technologies that have achieved substantial market penetration and

a high degree of maturity, to assess whether they would be suitable for integration into the

solution architecture for the Army DFS portal—specifically, the IDA team sought to

determine whether any of these search engines would be suitable for situations involving

9
 See Footnotes [1], [2] and [3] above.

2-2

very large datasets that must be interactively searched and manipulated, that is, where

query response times must be less than two seconds.

The ever-growing volume of unstructured data has created a demand for algorithms

that can quickly identify content related to a specific keyword or concept. Document search

engines can use either forward indexing—an approach that maps the content of a document

to the set of words that appears in it—or inverted indexing—an approach that combines all

the lists of words extracted from the individual documents into a master list and then links

each word to every document it appears in. 10

Searching on the basis of a forward-indexing scheme requires searching each list of

words extracted from the respective documents to find out whether it contains the keyword

being used in the search. For large collections of documents and large lists of words per

document, the search time can become prohibitively long. In addition, this type of engine

does not automatically keep track of previous results but traverses each list anew for every

query.

Figure 2-1. Notional Depiction of an Inverted Indexing Approach

10
 The master list is normally scrubbed so that words with high frequency but little semantic content, e.g.,

it, in, the, a, as, for, that, etc., are removed. Further conditioning of the master list may be applied to

enhance the ability to retrieve pertinent documents using this approach.

2-3

An inverted index algorithm, on the other hand, will be much more efficient for this

type of search. This can be easily understood using the notional depiction given in Figure

2-1 of what an inverted index set looks like. As shown therein, given a set of keywords—

which usually are automatically generated from the content of each document, as was

mentioned above—the engine associates to each keyword a list of the documents in which

the keyword appears. The number of document entries linked to each keyword will be, on

average, much smaller than the total number of documents being searched. When one needs

to find which documents contain a given keyword, the engine only needs to fetch the set

of documents already associated with the keyword and display it. Because each list of

documents is a set in the mathematical sense, it is also easy to see how using set

intersection, set union, set difference, etc., allows the engine to retrieve the list of

documents that contain all the keywords given in the query (set intersection) or any

keyword in the list of keywords (set union), etc.

C. The “Six Degrees of Separation” (SDOS) Use Case in JSON

Figure 2-2. Representation of the “Six Degrees of Separation” (SDOS) Use Case as JSON

Documents

2-4

During the preceding analytical activities conducted in the course of the project, the

IDA team used the “six degrees of separation” (SDOS) use case as a good way to compare

the performance of various alternative technologies against the traditional relational data

store model. 11

Figure 2-2 schematically shows the conversion into a set of JSON documents of the

SDOS example data originally prepared using a relational database implementation

consisting of just two tables, namely, PERSON_TBL and PERSON_ASSN. The PERSON_TBL

was loaded with 128 million records of notional personnel information. 12 To create the

SDOS scenario, the set was conceptually divided into 8 subsets of 16 million records each

(shown in the figure as the blocks labeled T1, T2, . . . , T8). This then allowed for the

creation of person associations between instances of the respective T blocks that were

captured in the PERSON_ASSN table.

For simplicity the associations (represented in the figure as the arrows connecting

blocks T1 through T8) were constructed by picking a record in any of the eight blocks, but

linking it to an instance of person residing in the immediately following block. For

example, if one begins with an instance in the T1 block, then the association in the

PERSON_ASSN table would link said instance of person to an instance of person in the T2

block. In the context of the SDOS use case, this association is given the semantics of being

the first degree of separation, namely, SDOS01, for the instance of person in the T1 block.

The record in the T2 block can then be similarly linked to a record in the T3 block to

create the second degree of separation, namely, SDOS02, with respect to the instance of

person selected in the T1 block. Following this approach one can create any number of

degrees of separation for the 16 million instances of person in the T1 block. For the

technical reasons mentioned below, the IDA team chose to make the last association, i.e.,

SDOS08—which in the example under discussion is the one that links instances in the T8

block—a link back to the record in the starting block. In the example under discussion, this

would be the instance of person in the T1 block. This allows for easy checking of any

violation of the construction pattern described above, since a listing of the instances of

person representing the first eight degrees of separation would always have to start and end

with the same record chosen from the starting block.

The SDOS01 through SDOS08 associations in the PERSON_ASSN table correspond to

a set of 16 million subgraphs, each containing eight nodes and eight edges that capture the

semantics of the SDOS use case, namely, that person X “knows” person Y, and person Y

11
 Although the original problem was restricted to six degrees of separation, we use the term, and hence the

acronym SDOS, to refer to the general type of graphs, with edges representing the predicate “knows”

and vertices representing instances of person.

12
 To eliminate unnecessary clutter in the figure, only the key (perID) and the person’s first name (fname)

fields in the PERSON_TBL are shown.

2-5

“knows” person Z, etc. It is now fairly straightforward to rewrite the preceding statements

as key:value pairs of the type used in JSON serializations, which is exactly the end state

shown on the right hand of Figure 2-2.

Each such JSON document is constructed by defining an identifier key called “id”

whose value is made up of the prefix “PRE” and the value of perID used in the relational

data store for that instance of person. The JSON document also contains a key:value pair

made up of the key “fname”, whose value is the string corresponding to the first name of

the person in the block that starts the graph—in the example under discussion, this would

be the T1 block. Finally, the serialization contains eight key:value pairs that capture the

degrees of separation between the person instance in the starting block (e.g., T1) and the

person instances in blocks sequentially following it (e.g., T2, T3, . . . , T8). As shown in

the figure these are the keys “SDOS01”, “SDOS02”, . . . , “SDOS08”, and in our example

their values are the respective first name entries for each of the person instances residing

in blocks T1, T2, . . . , T8. 13

In similar fashion one can construct JSON documents for the subgraphs that start with

instances of person from the T2 block instead of the T1 block. And after those are built,

one can continue with the remaining blocks that make up the PERSON_TBL, until 128

million JSON documents have been constructed that capture all the associations contained

in the PERSON_ASSN table and express the SDOS semantics person X “knows” person Y.

Note that by construction, the associations—and, therefore, the resulting graphs—are

directed, going always from a lower numbered block to the immediately following higher

numbered one. Although one can interpret the relationship “knows” as being commutative

(if person X “knows” person Y, then person Y “knows” person X) the sample data

considered here does not use this generalization.

13
 The JSON documents produced via the approach described in this section are partially analogous to a

materialized view that conflates the PERSON_TBL and PERSON_ASSN tables into a single flat table

reflecting every possible association among the instances of PERSON_TBL. See footnote 2 for details of

a programmatic approach to build the SDOS01 case as a materialized view.

2-6

Figure 2-3. Notional Inverted Index Set for the SDOS Use Case

Figure 2-3 shows a notional depiction of an inverted index set for JSON documents

that represent the SDOS use case as described in the preceding paragraphs. The figure

shows how readily one can find all the documents with the key:value pair fname : BRADLEY

that also contain the key:value pair SDOS01 : CURT, namely, the documents with id :

1000000005 and id : 1000000055. A more quantitative description of how well the Apache

Solr search engine scales up is presented in the following section.

D. Example of Scalability and Performance – Apache Solr

The Apache Solr search engine is a top-performing implementation of the inverted

index search algorithm and, therefore, was selected to test the applicability of this

technology for use in the Army DFS portal. The testing was done with the JSON

serializations for the SDOS use case discussed in the preceding section. As with previous

experiments, the IDA team used a Dell PC with 16GB of RAM and a 5th generation Intel

Core i7 processor with two cores. The Apache Solr version used was 7.2.1, and the

operating system was Linux Centos 7.

1. Data Loading Performance

Figure 2-4 shows the time in milliseconds it took to successively load 246MB

datasets, each containing 1 million JSON documents, each document corresponding to a

subgraph with 8 nodes. As shown therein, it takes about a minute and three seconds on

average to load a document of that size and complexity.

2-7

Figure 2-4. Example of Time Required to Load Data Sets into Apache Solr Server

2. Data Retrieval Performance

Figure 2-5. Time to Access and Retrieve Data for the

“TYLER knows DORIAN” Query

2-8

Figure 2-5 shows the retrieval times obtained with a web application written in

hypertext preprocessor (PHP) that uses the Solarium API. The application must load the

libraries, connect to the Solr search engine, and then output the number of documents found

and the statistics for the search. The figure shows the results for 1 million and 8 million

JSON documents loaded into the Solr server.

As can be seen in Figure 2-5, on average the data is retrieved in under 12

milliseconds, with very little variability associated with the type of query (e.g., SDOS01

vs. SDOS08). This is a much better performance than when using SPARQL queries

executed in RDF triple stores such as RDF4J and AllegroGraph, or when using unification

queries with a Prolog knowledgebase or using recursive SQL queries against a relational

data store using PERSON_TBL and the PERSON_ASSN tables. In any of those

implementations, the observed retrieval times tend to be in the tens or even hundreds of

seconds.

As we showed in the previous analytical results, for relational databases it is possible

to obtain similar data retrieval performance by converting the PERSON_TBL and the

PERSON_ASSN tables into a materialized view of any specific query. Once the results are

persisted in the new table, there is no need to traverse the association table thousands or

even millions of times to answer questions such as “How many instances of individuals

named ‘X’ know individuals named ‘Y’?”

However, the effort involved in the definition and execution of said materialized

views for a relational data store implementation of the SDOS use case with data volumes

of 128 million or larger is substantial once the degree of separation is greater than 3.

Furthermore, in order to be practical, the materialized view would need to be built with

complete generality rather than for a single specific case—such as X = ‘TAYLOR’ and Y =

‘DORIAN’ in the above query—unless one wants to build potentially a couple of millions of

them to cover each possible combination of first names and degrees of separation. In

contrast, the JSON representation of the SDOS use case data in combination with an engine

that uses the inverted index algorithm, such as Apache Solr, appears to provide a very

elegant solution.

E. Force Structure Data as a Variant of the SDOS Use Case

The Army Data Strategy 14 establishes five strategic level data goals, that is, to make

all operationally relevant data visible, accessible, understandable, trusted, and

interoperable (VAUTI). Force structure data is operationally relevant, and, therefore,

should be fully interoperable across all Army mission areas.

14
 Army Data Strategy, Information Architecture Division, Army Architecture Integration Center, HQDA

CIO/G-6, Version 1.0, February 2016.

2-9

To that effect, the Army has endorsed the activities of the Global Force Management

Data Initiative (GFM DI).15 The GFM DI data strategy calls for the establishment and

population of Organizational Servers (Org Servers) from which users may obtain and

exchange authorized force structure data. When using relational data stores, the strategy

foresees the use of DoD-wide, standardized and unambiguous identifiers, known as Force

Management Identifiers (FMIDS) and defined as part of the Organizational and Force

Structure Construct (OFSC).16 This approach is intended to support both stable nodes,

known as organizational elements (OEs), and dynamic links among OEs which make the

Dynamic Force Structure Representation (DFSR).

Figure 2-6 shows a notional example encompassing Army command and/or

administrative control requirements that can be represented using the type of relations

defined as part of the OFSC specification.

Figure 2-6. Notional Example of Force Structure Data

15
 Global Force Management Data Initiative, DoD Instruction (DoDI) 8260.03, February 19, 2014.

16
 Organizational and Force Structure Construct (OFSC) for Global Force Management (GFM), DoD

Instruction (DoDI) 8260.03, August 23, 2006.

2-10

This type of data can be readily loaded into the physical schema of a GFM-DI-

compliant Organization Server. Since, as we showed in a previous phase of the study, any

type of data resident in a relational data store can be serialized in the form of RDF triples,

and once in that form, it in turn can then be transformed into JSON documents, the GFM

DI force structure data can be loaded into in an Apache Solr server enabling the creation

of interactive web applications that can operate well within the expected performance

limits, i.e., less than 1-second query execution time.

3-1

3. Conclusions and Recommendations

A. Conclusions

Based on the analytical work during the final phase of the study, the IDA team

concluded the following:

 Search engines—such as Apache Solr—that leverage inverted index data structures

and can store data expressed in the form of key:value pairs have achieved a high

degree of maturity and acceptance in the commercial world. Their ability to handle

data volumes of the same magnitude as that expected for the planned Army DFS

portal is adequate, even when the Solr server runs on standard hardware.

 Interactive web applications that use an Apache Solr server loaded with RDF

triples converted into JSON documents made up of key:value are feasible, and the

data retrieval performance observed in preliminary tests is consistently well under

one second per query.

B. Recommendations

For the final phase of the study, the recommendations are as follows:

 The solution architecture for the Army DFS portal should include technologies such

as inverted index search engines, coupled with data representations compatible with

such engines, to minimize the risk of the poor data retrieval performance associated

with most graph database implementations.

 Processes for transforming force structure data from one representation into another

should be identified early in the planning for the Army DFS to ensure that each of

the technologies included in the solution architecture can be optimally exploited.

 Simulation techniques should be employed to assess the impact of hybrid solution

architectures on the concept of operations of the Army DFS portal.

3-1

A-1

Appendix A.

Combining Key:Value Pair Data Representations

with Fast Inverted Index Search Engines

1. Introduction

As was mentioned in the main portion of this document, the Apache Solr engine is a

very fast inverted index search engine that has been optimized to handle large collections

of documents expressed in the form of key:value pairs. In a previous deliverable17 it was

shown that data serialized as RDF triples can be readily transformed into JSON documents

that use key:value pairs to capture content.

This annex shows an approach based on the combination of the two above-mentioned

technologies that could be used to mitigate the risk of the poor data retrieval performance

exhibited by graph databases when processing deeply nested SPARQL queries, such as

those encountered in the “six degrees of separation” (SDOS) use case. To be able to

quantify the advantages offered by the proposed approach and compare them with results

obtained in the previous phases of the study, the IDA team serialized as JSON documents

the same sample data that was stored in the tables Person and PersonAssociation within a

MySQL server.18

2. Apache Solr Server Performance for the SDOS Use Case

The following sections show the substantial improvement in data retrieval time that

can be obtained when using inverted index search engines, such as Apache Solr, to solve

the SDOS use case.

a. Loading the JSON Documents into the Apache Solr Server

The JSON documents generated by the Python script described in the preceding

section can be loaded into the Apache Solr server from the command line using curl. The

example curl command shown below loads a file named SDOS128_01f.json into the Solr

server.

17
 See footnote 2 above.

18
 See footnotes 2 and 3 above

A-2

curl 'http://localhost:8983/solr/gettingstarted/update?commit=true' --

data-binary @./SDOS128_01f.json -H 'Content-type:application/json'

When the upload is completed, the Solr server will respond indicating that the

document has been successfully loaded. The entry QT entry gives the time in milliseconds

it took the Apache Solr server to process the file.

{

 "responseHeader":{

 "status":0,

 "QTime":61490}}

On a standard Dell PC tower with a two core Intel i7 chip and 16GB of random access

memory (RAM), it takes on average 60 to 70 seconds to process a 246MB file.

On a computer running Apache Solr server a user-friendly web interface called the

administrator console can be accessed by default at http://localhost:8983/solr. The

administrator console allows for the quick inspection of the data stored in the server. Figure

A-1 shows the status of the Solr server after all 128 million JSON documents have been

loaded.

Figure A-1. Screen Capture of the Apache Solr Server Admin Interface

with All 128 Million JSON Documents Loaded

http://localhost:8983/solr

A-3

b. Querying the Apache Solr Server

Figure A-2. Results for the SDOS01 Query Using the Solr Admin Interface

Once all the SDOS data has been loaded into the server, one can also use the

administrator console to query the database. Figure A-2 the status of the console after

executing the query entered in the textbox labeled q using the standard Solr query syntax.

In the example shown, the query asks for all the JSON documents that satisfy the condition

that their fname key has the value “TAYLOR” and the SDOS01 key has the value “DORIAN”.

The Apache Solr engine inspects all 128 million JSON documents and retrieves those

instances that satisfy the condition. As shown in the figure, the response block shows that

there are 51 such documents in the database. The (query time) QT entry in the

responseheader block indicates that it took the Solr server 38 milliseconds to process the

query.

Figure A-3 shows the results for the SDOS02 query. The query inspects again all 128

million JSON documents and retrieves those instances that satisfy the condition that the

fname key has the value “TAYLOR” and the SDOS02 key has the value “DORIAN”. The

response block shows that there are 31 such documents. The QT entry indicates that it took

the Solr server 12 milliseconds to process the query.

A-4

Figure A-3. Results for the SDOS02 Query Using the Solr Admin Interface

The Apache Solr server caches the results of the queries it executes. When executing

again the same SDOS02 query described above, the QT drops down to less than 1

millisecond (displayed as a QT value of 0 milliseconds) as shown in Figure A-4.

Figure A-4. Retrieval Time for Cached Queries in the Apache Solr Server

A-5

Figure A-5. Apache Solr Server Data Retrieval Times for the SDOS Use Case

Figure A-5 summarizes the data retrieval performance of the Apache Solr server for

all eight degrees of separation. The results show vastly improved performance when

compared to the data retrieval times obtained using a Prolog knowledgebase loaded with

only eight million clauses corresponding to the SDOS01 through SDOS08 associations for

the first million entries in the T1 block (See Figure A-6). A full discussion of the use of

Prolog is contained in the third deliverable. 19

19
 See footnote 3.

A-6

Figure A-6. Prolog Data Retrieval Times for the SDOS Use Case and 8 Million Clauses

Figure A-7. SQL Query Data Retrieval Times for the SDOS Use Case using 128 Million

Entries

A-7

As shown in Figure A-7, the performance of relational databases for the SDOS use

case is even poorer than that shown by Prolog knowledgebases. Preliminary testing

conducted during the second phase of the study using a MySQL server implementation

showed execution times that were completely inadequate for the development of web-

based applications.20 As shown in the figure, the retrieval of the 51 records corresponding

to the SDOS01 query took 285 seconds in MySQL compared to just 8 milliseconds using

Solr. The SDOS02 query took over a thousand times longer to complete.

3. Using the Apache Solr Server for Web Application Development

The preceding section showed how a change in data representation—i.e., from RDF

triples to JSON key:value pairs—can be combined with search engines optimized for the

selected data representation—e.g., Apache Solr—to bring the data retrieval times well

within the limits needed for interactive web applications. This section shows a basic

example that uses the server-side scripting language PHP in combination with the Apache

Solr server operating as the backend data store. The web application uses Solarium, a very

user-friendly Solr client library for PHP that can be used to pass queries to the Solr server

and then retrieve and display the results.21

20
 See footnote 2 above.

21
 https://solarium.readthedocs.io/en/latest/

A-8

a. Basic Web Application Interface

Figure A-8. Web Applications Using the Solr Server as Backend Data Store

Figure A-8 shows a basic web application built with PHP that queries the Solr server

and displays the results for the SDOS01 query. The number of documents found is the same

as what was found using the Solr administrative console, but now the retrieval time

includes the time that it takes to load the Solarium API libraries, as well as the time that it

takes to render the HTML results. In spite of all this, the performance appears to be well

within the limit of requiring less than 1 second.

A-9

b. Web Application Statistics

Figure A-9 summarizes the performance observed in a very basic Web application

using PHP and the Solr server as the backend data store.

Figure A-9. Data Retrieval Performance for Web Applications Using the Solr Server as

Backend Data Store

As can be seen in Figure A-9, the application is well within the limits desired for

interactive applications, which would arguably support the claim that performance

degradation due to added web application functionality could be mitigated through the use

of more powerful hardware.

B-1

Appendix B.

Sample Code Used for Testing Solutions Based

on the Apache Solr Search Engine

The code examples included in this section are provided primarily to facilitate the

development of assessment tests similar to those described in this document for graph

database manipulation using inverted index search engines, such as Apache Solr.

To eliminate barriers to the reuse of an entire snippet or a portion thereof, all the code

examples are released under the MIT license shown below.22 The Institute for Defense

Analyses, however, retains the copyright of all the code contained in this appendix.

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

22
 https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT

B-2

A. Preparation of the JSON Documents

1. Python Scripts to Generate the JSON Documents

The 128 million entries in the Person table are notionally divided into 8 blocks of 16

million records each. The PersonAssociation table contains links corresponding to eight

degrees of separation expressed in the form of records listing the key of the subject person

(subjperID) and its associated object person (objperID). The PersonAssociation table is

constructed so that the first degree of separation (SDOS01) is built between records from

the T1 block referencing records from the T2 block. Similarly, the second degree of

separation (SDOS02) is built by associating the preceding instances from the T2 block to

instances in the T3 block. The same pattern is used to create all eight degrees of separation

used to test both relational data store implementations as well as their alternatives.

The first Python script listed below traverses all 16 million records from the T1 block

stored in the PersonAssociation table. For each entry, it fetches the associated identifiers

from the remaining T2 through T8 blocks to create the respective SDOS01 through SDOS08

associations. Figure B-1 shows a snippet of the resulting sorted table containing the first

10 entries.

Figure B-1. Snippet of the Sorted PersonAssociation Table

B-3

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb

startVal = 1000000005
counter = 1

A = []
B = []

con = mdb.connect('localhost', <user>, <password>, <db>);

with con:

 for j in range(16000000):

 cur = con.cursor()

---------------- first record ------------------------

This code uses the alias perAssn3 for the original PERSON_ASSN table and persAssn2 for the resorted
variant of the PERSON_ASSN table.

print "First Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(startVal)
print sqlStr

B-4

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- second record ------------------------

print "Second Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- third record ------------------------

print "Third Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

B-5

 counter = counter + 1

---------------- fourth record ------------------------

print "Fourth Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- fifth record ------------------------

print "Fifth Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- sixth record ------------------------

print "Sixth Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()

B-6

 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- seventh record ------------------------

print "Seventh Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

---------------- eigth record ------------------------

print "Eigth Record"

 sqlStr = "SELECT subjperID,objperID FROM perAssn3 WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 sqlStr = "INSERT INTO persAssn2 VALUES(" + str(counter) + "," + str(subj) + "," + str(obj) + ")"

print sqlStr

 cur.execute(sqlStr)

 counter = counter + 1

B-7

--

 con.commit()

 startVal = startVal + 5

con.close()

Once the PersonAssociation table has been sorted in the manner indicated above, one

can use the Python script listed below to generate JSON documents with the key:value

pairs, as shown in Figure B-2.

Figure B-2. Example of a JSON Document Containing

All the Key:Value Pairs Needed for the SDOS Use Case Test

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

B-8

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb
import json

con = mdb.connect('localhost', <user>, <password>, <db>)

with con:

 cur = con.cursor()

 localDict = {} # create an empty dictionary

This script generates JSON documents for the first million of records in the T1 block
To generate all JSON for the 16 million one simply needs to change the range in
increments of 8 million, e.g., (8000000,16000000,8) for the second million,
(16000000,24000000,8) for the third, and so on.

 for jj in range(0,8000000,8):

#--------------------- FIRST RECORD ---

 mycntr = jj + 1

This code uses the alias persAssn2 for the original PERSON_ASSN table.

get the first pair of person-person association
 sqlStr01 = "SELECT subjperID,objperID FROM persAssn2 WHERE assnID =" + str(mycntr)

 cur.execute(sqlStr01)

 row01 = cur.fetchone()

 subj = int(row01[0])
 obj = int(row01[1])

create a string in the form of "PER1000000005"
 perID = "PER" + str(subj)

get the fname for that entry in the person08a Tbl
 sqlStr02 = "SELECT fname FROM person08a WHERE perID =" + str(subj)

 cur.execute(sqlStr02)

 row02 = cur.fetchone()

place the fname in the variable fname

B-9

 fname = str(row02[0])

add items to the dictionary

 localDict['id'] = perID
 localDict['fname'] = fname

#--------------------- SDOS01 ---

get the name of the associated person
 sqlStr03 = "SELECT fname FROM person08a WHERE perID =" + str(obj)

 cur.execute(sqlStr03)

 row03 = cur.fetchone()

place the fname in the variable fname
 fname = str(row03[0])
 localDict['SDOS01'] = fname

#--------------------- SDOS02 ---

 mycntr = jj + 2
 sqlStr04 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr04)

 row04 = cur.fetchone()

 obj = int(row04[0])

 sqlStr03a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr03a)
 row03a = cur.fetchone()

place the fname in the variable fname

 fname = str(row03a[0])
 localDict['SDOS02'] = fname

#--------------------- SDOS03 ---

 mycntr = jj + 3
 sqlStr05 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr05)

 row05 = cur.fetchone()

 obj = int(row05[0])

 sqlStr04a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr04a)
 row04a = cur.fetchone()

place the fname in the variable fname
 fname = str(row04a[0])

B-10

 localDict['SDOS03'] = fname

#--------------------- SDOS04 ---

 mycntr = jj + 4
 sqlStr06 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr06)

 row06 = cur.fetchone()

 obj = int(row06[0])

 sqlStr05a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr05a)
 row05a = cur.fetchone()

place the fname in the variable fname
 fname = str(row05a[0])
 localDict['SDOS04'] = fname

#--------------------- SDOS05 ---

 mycntr = jj + 5
 sqlStr07 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr07)

 row07 = cur.fetchone()

 obj = int(row07[0])

 sqlStr06a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr06a)
 row06a = cur.fetchone()

place the fname in the variable fname
 fname = str(row06a[0])
 localDict['SDOS05'] = fname

#--------------------- SDOS06 ---

 mycntr = jj + 6
 sqlStr08 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr08)

 row08 = cur.fetchone()

 obj = int(row08[0])

 sqlStr07a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr07a)
 row07a = cur.fetchone()

place the fname in the variable fname
 fname = str(row07a[0])
 localDict['SDOS06'] = fname

B-11

#--------------------- SDOS07 ---

 mycntr = jj + 7
 sqlStr09 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr09)

 row09 = cur.fetchone()

 obj = int(row09[0])

 sqlStr08a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr08a)
 row08a = cur.fetchone()

place the fname in the variable fname
 fname = str(row08a[0])
 localDict['SDOS07'] = fname

#--------------------- SDOS08 ---

 mycntr = jj + 8
 sqlStr10 = "SELECT objperID FROM persAssn2 WHERE assnID =" + str(mycntr)
 cur.execute(sqlStr10)

 row10 = cur.fetchone()

 obj = int(row10[0])

 sqlStr09a = "SELECT fname FROM person08a WHERE perID =" + str(obj)
 cur.execute(sqlStr09a)
 row09a = cur.fetchone()

place the fname in the variable fname
 fname = str(row09a[0])
 localDict['SDOS08'] = fname

 print json.dumps(localDict, ensure_ascii=False,sort_keys=True,indent=4, separators=(',', ': ')),","

 localDict = {}

B. Example PHP Web Application

The PHP script shown below uses the Solarium libraries to interface with the Apache

Solr server, pass the query and render the results in HTML.

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

B-12

portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

<?php

$time_start = microtime(true);

require(__DIR__.'/init.php');

htmlHeader();

// create a client instance
$client = new Solarium\Client($config);

// get a select query instance
$query = $client->createSelect();

// create a filterquery
$query->createFilterQuery('sdos01')->setQuery('fname:TAYLOR AND SDOS01:DORIAN');

echo '<p>QUERY: fname: TAYLOR AND SDOS01: DORIAN</p>';

// this executes the query and returns the result
$resultset = $client->execute($query);

// display the total number of documents found by solr
echo 'NumFound: '.$resultset->getNumFound();
// show documents using the resultset iterator
foreach ($resultset as $document) {

 echo '<hr/><table>';
 foreach ($document as $field => $value) {
 if (is_array($value)) {
 $value = implode(', ', $value);
 }
 if($field =='id' OR $field == 'fname' OR $field == 'SDOS01'){
 echo '<tr><th>' . $field . '</th><td>' . $value . '</td></tr>';
 }
 }

 echo '</table>';
}

B-13

$time_end = microtime(true);

$time = $time_end - $time_start;

echo '<p>Total Execution Time (loading Solarium API, accessing Solr and displaying HTML page): '. $time .' secs </p>
';

htmlFooter();

R-1

References

Although graph database technologies are young as compared to their relational

database counterpart, a growing secondary literature is readily available. The following are

some of the most recent offerings. The URLs point to Amazon.com where the items can

be purchased.

Graph Databases: New Opportunities for Connected Data 2nd Edition, by Ian Robinson,

Jim Webber, and Emil Eifrem, published by O’Reilly Media; 2 edition (July 9,

2015).

https://www.amazon.com/Graph-Databases-Opportunities-Connected-

Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8

Neo4j in Action 1st Edition, by Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic

Fox, and Jonas Partner, published by Manning Publications; 1 edition (December

21, 2014).

https://www.amazon.com/Neo4j-Action-Aleksa-

Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8

Linked Data: Structured Data on the Web 1st Edition, by David Wood, Marsha Zaidman,

Luke Ruth, and Michael Hausenblas, published by Manning Publications; 1 edition

(January 24, 2014).

https://www.amazon.com/Linked-Data-David-

Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2

Linked Data for Libraries, Archives and Museums: How to Clean, Link and Publish your

Metadata, by Seth van Hooland (Author), Ruben Verborgh, published by Amer

Library Assn Editions (June 25, 2014).

https://www.amazon.com/Linked-Data-Libraries-Archives-

Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-

1

The Great Cloud Migration: Your Roadmap to Cloud Computing, Big Data and Linked

Data, by Michael C. Daconta, published by Outskirts Press (October 11, 2013).

https://www.amazon.com/Great-Cloud-Migration-Roadmap-

Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=

1-1

Information as Product, by Michael C. Daconta, published by Outskirts Press (October

21, 2007).

https://www.amazon.com/Information-as-Product-Michael-

Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2

The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge

Management 1st Edition, by Michael C. Daconta (Author), Leo J. Obrst (Author),

https://www.amazon.com/Graph-Databases-Opportunities-Connected-Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Graph-Databases-Opportunities-Connected-Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Neo4j-Action-Aleksa-Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Neo4j-Action-Aleksa-Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Linked-Data-David-Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2
https://www.amazon.com/Linked-Data-David-Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Information-as-Product-Michael-Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2
https://www.amazon.com/Information-as-Product-Michael-Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2

R-2

Kevin T. Smith, published by Wiley; 1 edition (May 30, 2003).

https://www.amazon.com/Semantic-Web-Services-Knowledge-

Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr

=1-5

Joe Celko’s Complete Guide to NoSQL: What Every SQL Professional Needs to Know

about Non-Relational Databases 1st Edition, by Joe Celko, published by Morgan

Kaufmann; 1 edition (October 7, 2013).

https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-

ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1

Apache Solr, A Practical Approach to Enterprise Search, 1st Edition, by Dikshant Shahi,

Apress (2015)

https://www.amazon.com/Apache-Solr-Practical-Approach-

Enterprise/dp/1484210719/ref=sr_1_4?s=books&ie=UTF8&qid=1520362788&sr=1

-4

https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1
https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1
https://www.amazon.com/Apache-Solr-Practical-Approach-Enterprise/dp/1484210719/ref=sr_1_4?s=books&ie=UTF8&qid=1520362788&sr=1-4
https://www.amazon.com/Apache-Solr-Practical-Approach-Enterprise/dp/1484210719/ref=sr_1_4?s=books&ie=UTF8&qid=1520362788&sr=1-4
https://www.amazon.com/Apache-Solr-Practical-Approach-Enterprise/dp/1484210719/ref=sr_1_4?s=books&ie=UTF8&qid=1520362788&sr=1-4

AA-1

Acronyms and Abbreviations

AI artificial intelligence

API Application Program Interface

AQL ArangoDB Query Language

AWS Amazon Web Services

CDS Cross-domain solution

CRUD Create, Retrieve, Update, Delete

CSV Comma Separated Values

DDL data definition language

DFS Dynamic Force Structure

DML data manipulation language

DoD Department of Defense

DSE DataStax Enterprise

ETL Extraction, Transformation and Loading

GFM DI Global Force Management Data Initiative

GUI Graphic User Interface

IDA Institute for Defense Analyses

IRC Internet Relay Chat

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

JVM Java virtual machine

LINQ Language Integrated Query

MQL Metaweb Query Language

MTO&E Modified Table of Organization and Equipment

AA-2

NoSQL Not only Structured Query Language

OE organizational element

OWL Web Ontology Language

PHP hypertext preprocessor

PII personally identifiable information

PKB Prolog Knowledge Base

RDF Resource Description Framework

ReST Representational State Transfer

SaaS software as a service

SPARQL A recursive acronym for SPARQL Protocol and RDF Query

Language

SQL Structured Query Language

TB Terabyte

TDA Table of Distributions and Allowances

TSL Trinity Specification Language

XML Extensible Markup Language

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

30-03-18 Final

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Assessment of Graph Databases as a Viable Materiel Solution for the Army’s Dynamic

Force Structure (DFS) Portal Implementation: Final Report
HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Francisco L. Loaiza-Lemos, Dale Visser, Russell J. Smith BC-5-4277

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

D-8980 Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

SAIS-AOD Mr. Bruce Haberkamp

Army CIO/G-6 (SAIS-AOD)

5850 23rd Street, (Building 220, Room 236, Module A), Ft. Belvoir, Virginia

20060-5832

11. SPONSOR’S / MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Project Leader: Francisco L. Loaiza-Lemos

14. ABSTRACT

This document summarizes the conclusions and recommendations made during the three preceding phases of the study and examines the maturity

and applicability of two additional technologies, namely, (1) inverted index search engines, such as the open source implementation provided by

Apache Solr; and (2) key:value pair data representations, such as the one used in JSON document serializations, for re-expressing the results of

highly recursive SQL queries typically employed in large relational force structure data stores. The document specifically describes preliminary

results showing how the combination of the two technologies mentioned above can be used to build interactive web applications that can be

reliably keep the total data access and retrieval time of at < 1s per query. Since graphs expressed in the form of RDF triples can be easily

transformed into JSON documents and vice versa, the employment of these two technologies as part of the solution architecture for the planned

Army Dynamic Force Structure portal would be complementary to the use of a graph database baseline. Rapid prototyping techniques have been

applied as part of the continuing evaluation of described technologies that could complement a graph database implementation. The assessments

presented in this document leverage the metrics elaborated in previous reports provided to the sponsor.

15. SUBJECT TERMS

Inverted index search engines, key:value pair, Apache Solr, JSON, recursive SQL query, JSON, force structure, relational data store,

web application, interactive web application

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

52

19a. NAME OF RESPONSIBLE PERSON

Mr. Bruce Haberkamp

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area Code)

 703-545-1464
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std, Z39.18

