

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

 Assessment of Graph Databases as a
Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS)
Portal Implementation:

Part 3, Risks, Mitigation Approach,
and Roadmap

 Francisco L. Loaiza-Lemos, Project Leader

Russell J. Smith

December 29, 2017

Approved for public release;
distribution is unlimited.

IDA Document
D-8852

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under contract
HQ0034-14-D-0001, Task BC-5-4277, “Assessment of Graph Databases as a Viable
Materiel Solution for the Army's Dynamic Force Structure Portal Implementation,” for
Army CIO/G-6 (SAIS-AOD). The views, opinions, and findings should not be construed
as representing the official position of either the Department of Defense or the
sponsoring organization.

Acknowledgments
David A. Wheeler

For more information:

Francisco L. Loaiza-Lemos, Project Leader
floaiza@ida.org, 703-845-687

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice

© 2017 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:mmyers@ida.org

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-8852

Assessment of Graph Databases as a
Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS)
Portal Implementation:

Part 3, Risks, Mitigation Approach,
and Roadmap

Francisco L. Loaiza-Lemos, Project Leader

Russell J. Smith

i

Executive Summary

This document was prepared by the Institute for Defense Analyses (IDA) in support

of the FY 16 Army Study “Assessment of Graph Databases as a Viable Materiel Solution

for the Army’s Dynamic Force Structure (DFS) Portal Implementation.”

This document constitutes the third deliverable under the project description and

addresses the study’s objective of assessing the maturity and applicability of graph

database technology as a practicable materiel solution that reflects legacy system realities

and that can effectively and efficiently deliver the needed at-rest and in-motion force

structure products for the planned DFS portal.

Specifically, the third deliverable identifies technical risks together with suitable

mitigation approaches and describes a roadmap and its milestones for a possible technology

insertion to support the planned Army DFS Portal. The IDA team applied rapid prototyping

techniques as part of the continuing evaluation of alternatives to stress the implementations

of the graph databases chosen for the study. The team used data collected during those

activities to continue maturing the decision process needed to determine the best-of-breed

options. The assessments leverage the metrics elaborated in the initial phase of the study,

which were documented in the first deliverable.1

Background

This phase of the study is aligned with the goals and objectives of the Department of

Defense (DoD), as expressed in its Global Force Management Data Initiative (GFM DI),

whereby DoD is seeking the standardization of all authorized force structure data so that it

can be understandable to, and usable by, both warfighting and business systems across the

DoD Enterprise.2 As noted in the two previous 3 deliverables under this project, the

challenge in all of the related activities is the harmonization of data that currently resides

1
 IDA Document D-8345, Assessment of Graph Databases as a Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS) Portal Implementation: Part 1, Preliminary Characterization of Data

Sources, Representation Options, Test Scenarios and Objective Metrics, F. Loaiza, D. Visser, February

24, 2017.

2
 http://www.prim.osd.mil/init/init_osdmanpower.html

3
 The second deliverable was IDA Document D-8516, Assessment of Graph Databases as a Viable

Materiel Solution for the Army’s Dynamic Force Structure (DFS) Portal Implementation: Part 2,

Technical Feasibility, Affordability, and Architecture Integration Options, F. Loaiza, D. Visser, June1,

2017.

http://www.prim.osd.mil/init/init_osdmanpower.html

ii

in a large number of relational legacy systems so that it can be readily used in the generation

of at-rest and in-motion force structure products.

The main motivation for exploring graph database technology has been its potential

for cost reduction along with the procedural simplicity of an approach that directly recasts

the legacy source data in the form of Resource Description Framework (RDF) triples,4

collects them in a graph data store, and then uses the triples to generate the force structure

products. However, the adoption of any new technology, with the changes that it brings to

established workflows and procedures, carries technical risks. This phase of the analysis,

therefore, further explores the nature and severity of those risks, and suitable ways to

mitigate them. This document also presents a preliminary road map aligned with the

overarching DoD and Army strategy to make data visible, accessible, understandable,

trusted, and interoperable and discusses milestones for a possible technology insertion to

support the planned Army DFS Portal.

Document Structure

This document is organized as follows:

1. Section 1 presents a catalog of technical risks likely to show up when replacing

relational data stores with graph databases as the main technology supporting

the storage and retrieval of data needed to operate the Army DFS Portal, and

how best to mitigate them.

2. Section 2 documents a possible road map for incorporating graph databases into

the mix of technologies supporting the Army DFS Portal, and how the adoption

of this technology is consistent with the DoD data strategy.

3. Section 3 provides the current set of conclusions and recommendations for this

phase of the study.

4. Appendix A revisits the notion of using a “semantic layer” (e.g., the explicit

addition of classes and semantic declarations, such as class equivalences, to the

knowledge base) to enable the harmonization and manipulation of data from

disparate sources using an alternate representation that lends itself to

programmatic manipulation. Specifically, the discussion highlights the ability to

use different representations to improve the efficiency of the data processing and

manipulation. With regard to the latter point, the appendix discusses the use of

well-established programming languages, such as Prolog,5 for this purpose.

4
 https://www.w3.org/RDF/

5
 Prolog was chosen during this phase of the project because there are already graph database implementations

that support the use of Prolog for data extraction, as an alternative to SPARQL queries. In addition, since

Prolog is a declarative programming language, the queries look quite similar to the SPARQL counterparts.

iii

5. Appendix B contains a number of Python scripts that were used to generate the

test data used in testing the ideas presented in Appendix A. The code is licensed

for free reuse, and it is intended to help other groups in their evaluations.

Scope

As in the two previous deliverables, the results described in this document do not

address any of the complexities inherent in the policies and procedures embedded in the

“as-is” systems that currently support the population of the Army Organization Server

under the GFM DI initiative, which would come into play for scenarios in which the source

data to be converted into RDF triples is in the form of XML instance documents that

conform to the GFM DI specifications. It is, therefore, assumed that those XML instance

documents can both be generated and would be accessible as inputs for subsequent

manipulations required by the graph database approach.

Although other popular programming languages now offer libraries for creating,

querying, and modifying graphs, this phase of the analysis did not attempt to compare and

contrast them in relation to the language used as an example of programmatic

manipulations, namely, Prolog. Depending on time and resources available, the IDA team

may be able to revisit this aspect of the graph database technology use and document it in

the final report.

Finally, as noted in the two previous deliverables, the performance of off-the-shelf,

standard computer equipment has proven inadequate for handling in near real time, i.e., in

a second or less, large graphs, i.e., graphs containing tens or hundreds of billions of triples.

The near-real time search and retrieval of data in those scenarios most likely will need

special-purpose hardware and software. Therefore, the data sets used in this phase of the

study serve only to demonstrate the underlying principles and are not to be interpreted as

reference performance benchmarks for actual implementation.

Analytical Approach

The work performed for this phase of the study concentrated on answering the

following questions:

 What are the main technical risks associated with the use of graph databases as

part of the technology mix supporting the Army DFS Portal?

 What mitigation approaches can be brought to bear so that the potential benefits

associated with the use of graph databases will not be negated by the associated

technical risks?

 What implementation roadmap would be most appropriate in light of all the risks

and alternatives?

iv

 What key steps should be taken first to facilitate the adoption of graph databases

as part of the overall solution architecture supporting the Army DFS Portal?

 What are the enterprise-wide implications for the Army of adopting a graph

database approach?

 How can other data representations of the RDF triples content be leveraged for

the purpose of implementing a semantic layer that aids in the harmonization of

data from multiple disparate sources?

 What are the lessons learned and how can they help inform the decision process

needed to determine best-of-breed options?

Conclusions and Recommendations

Based on the analytical work performed during this phase, the IDA team concluded

the following:

 As briefly noted in the previous deliverables, the main risk associated with the

adoption of graph databases when compared to relational data stores in the context

of massive graphs is their inferior performance with respect to data retrieval and

complex query execution. For interactive applications, any data storage and

retrieval technology that requires more than one or two seconds to deliver the

answer is unlikely to be a strong contender in the solution architecture that supports

those use cases.

 However, some proprietary graph database solutions for “big data” are reaching a

sufficient level of maturity to be competitive with relational data stores in terms

of performance. Specifically, the combination of graph databases and frameworks

for distributed storage and processing, such as Apache Hadoop and Apache

Spark, make it possible to efficiently partition very large datasets to compensate

for any slowdowns caused by the size of the graphs.

 The idea of a “semantic layer” for organizing the resources in an RDF triple store

can be readily implemented using alternative data representations that are not only

closely related to the graph formalism – and, therefore, can be readily converted

back and forth – but that also can be directly processed using a programming

language (e.g., Prolog).

 The key rationale for using graph databases is mainly to enable the cost-effective

handling of legacy data, bypassing the laborious and expensive extraction,

transformation, and loading (ETL) associated with traditional approaches, and said

rationale is supported by all the findings obtained so far.

v

For this stage of the study, the preliminary recommendations are as follows:

 Continue the evaluation of available graph database implementations, both

proprietary and open source, and expand the scope to include other promising

NoSQL choices.

 Conduct additional comparisons regarding the use of other programming languages

and data representations for the purpose of implementing a “semantic layer” as part

of the graph database solution.

 Explore applicable emerging “big data” solutions with regard to their applicability

in a future implementation of the Army DFS Portal.

vii

Contents

Executive Summary ... i

Contents .. vii

1. Technical Risks and Mitigation Approach .. 1-1

A. Performance Risk .. 1-1

B. Data Quality Degradation Risk ... 1-2

C. Cybersecurity Risk .. 1-3

D. Additional Regulatory Frameworks Non-Compliance Risk 1-6

E. Work Flow Risk .. 1-7

2. Roadmap for Using Graph Databases in the Army DFS portal 2-1

A. Background ... 2-1

B. Graph Data Base Technology Insertion – Timeline and Milestones 2-2

C. Strategic Plan Implementation Management .. 2-3

D. Perspectives Description and Purpose ... 2-4

1. Financial Perspective ... 2-4
2. Internal Process Perspective .. 2-4

3. Organizational Perspective .. 2-4

4. End User Perspective ... 2-5

E. Correlation of Graph Database Use with Goals and Objectives within the

Army VAUTI Data Strategy ... 2-5

F. Recommended Metrics and Measures for the Army DFS Portal 2-6

1. Financial Perspective ... 2-6
2. Internal Process Perspective .. 2-7

3. Organizational Perspective .. 2-7

4. End User Perspective ... 2-8

3. Conclusions and Recommendations .. 3-1

A. Conclusions ... 3-1

B. Recommendations ... 3-1

Appendix A Alternate Representations of Graphs and Programmatic Manipulation via

Prolog ... A-1

Appendix B Sample Code Used for Testing Conversion of Legacy Relational Data to

RDF Triples ...B-1

A. Preparation of Prolog Knowledge Bases ...B-2

B. Scripts for PySWIP ...B-8

1. The SDOS Test Case ...B-8

References ..R-1

Acronyms and Abbreviations .. AA-1

viii

Figures and Tables

Figure 2-1. Notional Spiral Development for Integrating Graph Database Capabilities in

the DFS Portal ... 2-2

Figure A-1. Snippet of the Notional Person Table ... A-1

Figure A-2. Representation of the Person Records in RDF Using Turtle Serialization A-2

Figure A-3. Example of JSON LD Serialization of RDF Triples A-2

Figure A-4. Depiction of a Notional Round Trip Using JSON LD and Turtle

Serializations .. A-3

Figure A-5. A Portion of the Prolog Knowledge Base Corresponding to the RDF Triples

Containing the “fname” Predicate ... A-4

Figure A-6. A Portion of the Prolog Knowledge Base Corresponding to the RDF Triples

Containing the “knows” Predicate ... A-4

Figure A-7. Schematic Depiction of the Graph Structure for the Six Degrees of

Separation (SDOS) .. A-5

Figure A-8. Assertions in the PKB Sorted According to the Structure of the Six Degrees

of Separation Graph ... A-5

Figure A-9. Prolog Queries for the Six Degrees of Separation Test Case A-6

Figure A-10. Performance Results for the SDOS Test Case Using Sorted Assertions .. A-7

Figure A-11. Performance Results for the SDOS Test Case Using the PySWIP Bridge A-8

Figure A-12. Sample of Formatted SDOS Query Results using Python A-8

Table 1-1. Summary of Performance Risks and suggested Mitigation Approach 1-1

Table 1-2. Summary of Data Quality Risks and suggested Mitigation Approach 1-3

Table 1-3. Summary of Applicable Federal Information Systems Cybersecurity

Publications ... 1-4

Table 1-4. Sample of Access Control (AC) Family Controls for the Army DFS 1-5

Table 1-5. Summary of Data Aggregation Risks across Security Domains and suggested

Mitigation Approaches ... 1-6

Table 1-6. Risks Associated with Additional Regulatory Frameworks 1-7

Table 1-7. Risks Associated with Changes in the Workflows ... 1-7

Table 2-1. Assessment of Benefit from Using Graph Database Technology with Regard

to the Army VAUTI Data Strategy Goals and Enabling Objectives 2-5

Table 2-2. Metrics and Measures for the Financial Perspective 2-6

Table 2-3. Metrics and Measures for the Internal Process Perspective 2-7

Table 2-4. Metrics and Measures for the Organizational Perspective 2-8

Table 2-5. Metrics and Measures for the End User Perspective 2-9

1-1

1. Technical Risks and Mitigation Approach

This chapter discusses a number of the typical risks associated with the use of graph

databases and ways in which those risks can be mitigated. The catalog is not exhaustive.

A. Performance Risk

Table 1-1. Summary of Performance Risks and suggested Mitigation Approach

Performance Degradation

Risk Mitigation

 Queries become

slow as the size

of the graph

grows

 Implement the graph database with optimized hardware. This may include among other

things housing the application in one or more powerful, dedicated servers with multiple

multi-core processors; provisioning the servers with large RAM capacity (128 GB or more);

and using high-speed solid-state hard drives for data persistence.

 Partition large graphs into separate subcomponents hosted in high-performance machines

that can be managed as a single instance using frameworks for distributed storage and

processing such as Hadoop.6

 Use, where appropriate, the equivalent of “materialized views” for queries that take

substantial time to complete (e.g., tens or even hundreds of minutes). This means that the

slow queries are executed off-line against the complete graph and the results are then

stored as a secondary graph to be used to respond to subsequent requests.

 Develop special-purpose code to supplement the capabilities of the graph database

engine being used. This may include using hybrid solutions where the data may be stored

in multiple representations (e.g., RDF triples and compiled binary files), some of which can

then be processed with utilities written in high-performance languages (e.g., C/C++).

 Host the entire graph database in a highly scalable cloud solution, such as Amazon Web

Services, that can handle not only the data volume demands but also the processing

requirements.

Preliminary tests conducted with some representative graph database applications –

already documented in the two previous deliverables7,8– show that the size of the graphs

can have a severe impact on performance.

6
 http://hadoop.apache.org/

7
 IDA Document D-8345, Assessment of Graph Databases as a Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS) Portal Implementation: Part 1, Preliminary Characterization of Data

Sources, Representation Options, Test Scenarios and Objective Metrics, F. Loaiza, D. Visser, February

24, 2017.

8
 IDA Document D-8516, Assessment of Graph Databases as a Viable Materiel Solution for the Army’s

Dynamic Force Structure (DFS) Portal Implementation: Part 2, Technical Feasibility, Affordability, and

Architecture Integration Options, F. Loaiza, D. Visser, June 1, 2017.

1-2

For example, when using a non-optimized hardware configuration (e.g., a laptop with

one Intel i7 processor having eight cores and 16 GB of RAM), queries that involve as little

as 8 million subgraph traversals, each involving from two to six edges, will sometimes

require more than 10 seconds. This performance is clearly inadequate if one intends to

power an interactive, web-based solution, where users expect queries to execute in under

one second.

Table 1-1 above summarizes the performance risks that can be expected when

adopting graph database technologies and the ways in which they can be mitigated. We

highlight here that the elasticity, the use of a pay-as-you-go consumption model, and the

speed of deployment makes cloud solutions very appealing, especially if classification

issues and protection against cyber-attacks can be properly mitigated.

B. Data Quality Degradation Risk

The success of an information service, such as the planned Army DFS portal, depends

not only on having adequate response times, but perhaps even more so, on the quality of

the data. When users feel that the data is either obsolete or unreliable, they will stop using

the information service. A well-understood and applicable method for ensuring good data

quality is to adopt a comprehensive data governance for all the resources that are

incorporated and maintained in the Army DFS.9

In addition, when leveraging the capability of graph databases to store data from any

number of sources to create a de facto data lake, it is imperative that one maintain complete

oversight of the resources that have been committed to the repository so that they can

continue to be accessible and processable by the users. Failure to figure out which data and

metadata are essential to power the information services to be offered by the Army DFS

portal may turn the underlying graph database from a data lake into a data swamp.10

Table 1-2 summarizes the data quality risks that can be expected when adopting graph

database technologies and the ways in which they can be mitigated.

9
 A fairly detailed analysis of the issues related to data quality can be found in IDA Document D-4275,

Development of a Data Quality Framework for Creating and Maintaining Army Authoritative Data

Sources, F. Loaiza, C. Roby, E. Simaitis, S. Wartik, March 2011.

10
 https://www.cio.com/article/3199994/big-data/3-keys-to-keep-your-data-lake-from-becoming-a-data-

swamp.html

1-3

Table 1-2. Summary of Data Quality Risks and suggested Mitigation Approach

Data Quality Degradation

Risk Mitigation

 Underlying data lake

turns into a data

swamp

 Analyze data sources and specify maximum data volumes to be transferred from

each source during the initial phase of the creation of the data lake stored in the

graph database. Keep in mind that ease of data collection does not necessarily

equate to ease of data use.

 Analyze the data sources and build a conceptual information model to define the

metadata needed to characterize it. Associate the appropriate metadata to each

piece of data collected in the data lake.

 Assess the applicability of techniques such as unsupervised machine learning to

help mature and enrich the conceptual information model with the required

metadata.

 Implement a data governance process to ensure data quality during the life cycle of

the graph database implementation and use. Define quantitative metrics to create

verifiable data quality targets (e.g., metric: percentage of RDF triples without

associated metadata; data quality target: less than 5%).

 Analyze the data sources and determine when their data is likely to become

obsolete. Define a process to prune obsolete data from the data lake to ensure good

performance and high data quality.

 Conduct on a regular basis (annual, biennial) a comprehensive review of the

evolving goals and objectives of the Army DFS portal to ensure that the

implemented solution is adequately aligned.

 Conduct on a regular basis (annual, biennial) a review of emerging technologies

applicable to data quality maintenance and improvement (e.g., advances in artificial

intelligence, natural language processing, etc.).

 Establish a lifecycle management strategy for the preservation and protection of all

the digital assets comprising the Army DFS portal.

C. Cybersecurity Risk

Graph databases offer an elegant way to collect data into single repositories that can

then satisfy the needs of multiple components of the enterprise. But in the case of the

planned Army DFS, this same capability also represents a risk, since aggregating large

volumes of force structure data can reveal sensitive aspects of the processes employed by

the Army to maintain and regenerate its forces. Expressed in a different way, a fully

populated and operational Army DFS portal constitutes a very attractive target for cyber-

attacks intended to either damage it or exfiltrate its contents.

As stated in DoD Directive 8000.1, it is DoD policy to treat information as a strategic

asset and to protect it to the maximum extent possible.11 Extensive and applicable

cybersecurity guidance for the Army DFS portal can be found in (1) a series of National

Institute of Standards and Technology (NIST) Special Publications (SP), (2) in guidance

11
 DoDD 8000.1, Management of the Department of Defense Information Enterprise (DoD IE), March 17,

2016 (available at https://fas.org/irp/doddir/dod/d8000_01.pdf).

1-4

from the Committee on National Security Systems (CNSS), and (3) in the Federal

Information Processing Standards (FIPS). NIST partnered with the DoD, the Office of the

Director of National Intelligence (ODNI), and the CNSS to develop a common information

security framework for the federal government and its contractors. We highlight in this

section some of the applicable guidance documents (see Table 1-3).

Table 1-3. Summary of Applicable Federal Information Systems Cybersecurity Publications

Federal Information Systems Cybersecurity Publications

Publication Number Title

 NIST SP 800-37 rev 1 Guide for Applying the Risk Management Framework to Federal Information

Systems - A Security Life Cycle Approach

 NIST SP 800-53 rev 4 12 Security and Privacy Controls for Federal Information Systems and

Organizations

 NIST SP 800-30 rev 1 Guide for Conducting Risk Assessments

 FIPS 199 Standards for Security Categorization of Federal Information and Information

Systems

 FIPS 200 Minimum Security Requirements for Federal Information and Information

Systems

 CNSSI 1253 Security Categorization and Control Selection for National Security Systems

Determining the security controls required to ensure adequate protection of the data

that would be stored in a graph database powering the Army DFS portal starts with a set of

steps listed in NIST SP 800-37 rev 1. That publication describes a Risk Management

Framework (RMF) process comprising the following six steps:

 Step 1 – Categorize the Information System,

 Step 2 – Select Security Controls,

 Step 3 – Implement Security Controls,

 Step 4 – Assess Security Controls,

 Step 5 – Authorize Information System,

 Step 6 – Monitor Security Controls.

Incorporating cybersecurity measures consistent with the RMF in the Army DFS

portal development cycle – from the start rather than as an afterthought – can help

determine key aspects of the implementation, such as the appropriate hosting location, the

appropriate classification of the data loaded in the graph database, and the subsequent

selection of the necessary security controls. The other documents listed in Table 1-3 can

be used to build the necessary justification to obtain the required Authority to Operate

(ATO). The DFS portal will receive its ATO – as most Army systems do – from the Army

CIO/G6. The NIST SP 800-53 rev 4 control catalog contains security controls that the

12
 Revision 5 is expected to be released at the end of December 2017.

1-5

developers of the Army DFS portal ought to pay special attention to. Table 1-4 lists a subset

of controls in the Access Control (AC) family intended to protect the confidentiality and

integrity of the graph database.

Table 1-4. Sample of Access Control (AC) Family Controls for the Army DFS

Access Control (AC) Family Cybersecurity Controls

Control Number Control Description

 AC-20 “Use of External Information Systems”

– Provides guidance applicable to exchanges of information with systems outside

of the DFS portal.

 AC-21 “Information Sharing”

– Establishes criteria for exchanging information based on privileges of the

authorized users.

 AC-22 “Publically Accessible Content”

– Establishes criteria for determining whether or not to place DFS portal content

in a publically accessible system.

 AC-23 “Data Mining Protection”

– Provides guidance regarding data mining prevention and detection techniques

including, for example: (i) limiting the types of responses provided to database

queries; (ii) limiting the number/frequency of database queries to increase the

work factor needed to determine the contents of such databases; and (iii)

notifying organizational personnel when atypical database queries or accesses

occur.

 AC-24 “Access Control Decisions”

– Ensures that access control procedures are established within the graph

database.

The Army DFS portal will have to be hosted at the correct level of network

classification, and given the variety of data repositories across multiple domains that will

provide either legacy data or updated current data, accommodations will have to be made

to ensure that portal queries and data from potentially different classifications can be

exchanged adequately. Cross-domain solutions (CDS) can provide essential segmentation

and isolation of the data needed to handle data correctly in accordance with its classification

level while enabling queries and data to cross the classification boundaries. Table 1-5

summarizes the data aggregation risks and mitigation approaches for protecting across

security domains.

1-6

Table 1-5. Summary of Data Aggregation Risks across Security Domains and suggested

Mitigation Approaches

Data Aggregation Risks

Risk Mitigation

 Inadequate protection

when handling data

resident in systems

exhibiting multiple

classification levels

may prevent optimal

DFS operations

 Analyze aggregated data for proper classification

 Store aggregated data in a data lake at the highest classification level

 Use CDS to exchange data from lower data repositories to the higher classification

network hosting the graph data lake

 Leverage CDS to pass through graph database queries from higher to lower

classification networks

 Implement CDS based on guidance from the Cross Domain Enterprise Service

(CDES) offered through the Defense Information Systems Agency (DISA)

In addition to the above measures aimed at protecting data needed by the future Army

DFS portal, the IDA team highly recommends that the implementation leverage the lessons

learned and best practices from both government and the commercial world. Adopting what

industry considers the best approaches in Identity and Access Management Service (IAMS)

can minimize the risks associated with unauthorized access. Liberal use of encryption of

data, both at rest and in transit, can be extremely helpful in reducing the potential damage

associated with data exfiltrated during a cyberattack.

D. Additional Regulatory Frameworks Non-Compliance Risk

Although most of the activities that will involve the future Army DFS portal may take

place within the national boundaries, its implementation should consider the impact of

using it to host non-U.S. force structure data during international and coalition missions.

Review of the various status of forces agreements (SoFAs) may be necessary to avoid

conflict with regulatory data protection schemes that are being adopted in the near future,

such as the General Data Protection Regulation (GDPR) within the European Union (EU),

which will come into effect in May 2018.13

Any American company doing business or supporting users/customers in the EU will

have to comply with the GDPR. Because of the severity of the penalties, many information

technology (IT) contractors in the United States may begin to build into their solutions

components needed to ensure compliance with the GDPR. Both cost and performance risks

are potentially associated with this development (see Table 1-6).

13
 https://www.eugdpr.org/

1-7

Table 1-6. Risks Associated with Additional Regulatory Frameworks

Non-U.S. Regulatory Frameworks Compliance Risks

Risk Mitigation

 Heightened protection

of personal data

required by non-U.S.

regulatory frameworks

(e.g., GDPR) may

negatively affect

coalition and

multinational missions.

 Review existing SoFAs and seek to update them to prevent non-compliance issues

when conducting coalition and multinational missions.

 Identify when personal data can be excluded or pseudonymized when shared to

reduce the risk of exposure.

 Review the operational impact of using IT solutions that already satisfy requirements

imposed by the non-U.S. regulatory frameworks and assess whether it is mainly a

cost issue or whether it affects performance and policy. For example, ability to retain

shared non-U.S. force structure data containing personally identifiable information

(PII), need to ensure adequate encryption for PII, right to request erasure of PII data

after some specified period of time.

 Review the operational impact caused by a requirement to report breaches and data

leaks in systems located outside of the United States but used to operate/interface

with the DFS portal and carve exceptions where the burden of compliance is

deemed to be unacceptable from an operational point of view.

E. Work Flow Risk

As noted earlier, the adoption of graph databases will also trigger changes in the

current workflows. Some of the risks associated with these changes are highlighted in

Table 1-7.

Table 1-7. Risks Associated with Changes in the Workflows

Non-U.S. Regulatory Frameworks Compliance Risks

Risk Mitigation

 New workflows do not

support requirements

for metadata collection

and integration.

 Perform a thorough review of metadata requirements and ensure that the workflows

can associate each data item collected with the necessary metadata.

 Explore the applicability of automation techniques to reduce human error and

ensure high quality of results.

 Develop automated test cases and submit all outputs from workflows to careful

testing prior to ingestion – in particular, to ensure that all data remains visible and

accessible.

 Maintain careful versioning of the graph database content to ensure that errors in

ingested data can be efficiently corrected.

 Conduct on a regular basis (annual, biennial) a review of emerging technologies

applicable to data quality monitoring and data governance enforcement.

2-1

2. Roadmap for Using Graph Databases in the

Army DFS portal

A. Background

The commercial world continues to realize and exploit the benefits that can be

obtained from applying data analytics and business intelligence processes to large data

collections that leverage both graph database and cloud implementations of data lakes.14

Practitioners from the commercial world highlight the following best practices and lessons

learned:15

 Cost and schedule estimates should not be overly optimistic – it “is going to cost

more and take longer than you planned.”16

 Setting up the solution architecture may require as long as it will take to fine-tune

it – a one-year horizon may not be unusual.17

 For heavy and/or repetitive data migration jobs, it may be advisable to build tools

that automate, at least in part, this aspect of the data migration.

 Cost saving strategies offered by cloud providers (e.g., bidding on spare compute

nodes for temporary processing uses) can bring substantial savings but should be

used sparingly within the rate-determining steps of critical workflows because the

processing nodes can be snatched away by users willing to pay more for them.

 The maturity of both proprietary and open source implementations selected as

part of the solution architecture need to be carefully vetted to prevent common

but costly issues, such as file corruption and data losses, caused by undetected

bugs in the software releases.

14
 http://bigdata.teradata.com/US/Articles-News/7-Questions-About-Data-Lakes-and-Hadoop/

15
 http://searchdatamanagement.techtarget.com/feature/Cloud-big-data-clusters-test-users-on-migration-

management?utm_medium=EM&asrc=EM_NLN_83870256&utm_campaign=20171012_Migration%20

dragons,%20zombie%20clusters%20and%20other%20dangers%20in%20big%20data%20clouds;%20Or

acle's%20machine%20learning%20push&utm_source=NLN&track=NL-1816&ad=917048&src=917048

16
 Statement by Chris Mills, who leads the big data team at The Meet Group Inc. (see Footnote 10 above).

17
 See the example from the Meet Group in Footnote 10 above.

2-2

 In a similar vein, careful consideration should be given to the mix of private and

commercial clouds – not every process is suited for migration to a commercial

cloud, and some may need to remain within controlled non-cloud environments.

B. Graph Data Base Technology Insertion – Timeline and Milestones

After selecting the specific graph database implementation that will be used in the

planned Army DFS portal, a series of key steps should be taken to ensure that the overall

architecture solution is adequate and can deliver the expected functionality.

Figure 2-1. Notional Spiral Development for Integrating Graph Database Capabilities in the

DFS Portal

Figure 2-1 highlights, in the form of notional spiral development, five of the most

important steps that should be carried out over a period of six to 12 months, which would

address a number of the potential risks associated with the use of graph databases, as

discussed in the preceding chapter.

Step 1 comprises analysis of the required metadata tags that need to be added to the

RDF triples generated from the source relational data stores and harmonization and

consolidation of the metadata tags that will ensure that the SPARQL queries can always

reach all the data within the graph database. Step 2 comprises data ingestion of the properly

metadata-tagged RDF triples, testing of the functionality of the queries, and performance

2-3

of the entire solution. This step also ensures that the response times are within the

acceptable range of values needed for the selected use cases. In Step 3, if the basic

functionality tests are satisfactorily concluded, the data retrieval and manipulation

capabilities of the implemented solution can be extended and refined to cover the full set

of functional requirements. Step 4 allows the implementers to review and finalize the

workflows. These ought to cover metadata extraction, harmonization, and consolidation –

which will be required every time RDF triples from a new legacy data source are added to

the graph database – as well as tagging and testing of the SPARQL queries against updated

data. Workflows for maintenance functions such as performing backups, as well as less

common ones intended to perform periodic revision and update of the workflows

themselves to accommodate new requirements for the Army DFS Portal over its life cycle

should also be considered. Step 5, the final one in the notional spiral development shown

in Figure 2-1, covers the completion of the data migration for the sources identified for use

in the fully operational release version of the graph database.

As noted in the preceding paragraph, the expectation is that the workflows will

contain all the steps necessary to operate the graph database and support the capabilities of

the planned Army DFS Portal over its entire life cycle.

C. Strategic Plan Implementation Management

The overarching DoD, as well as the Army, data strategy is to make data visible (V),

accessible (A), understandable (U), trusted (T), and interoperable (I) – [VAUTI].18

Strategic plans generally promulgate both goals and objectives aimed at realizing the

strategy. The challenge for the enterprise is to ensure that these goals and objectives are

reached so that the overall strategy is successfully carried out. A methodology that

specifically focuses on the management of a strategic plan is the balanced scorecard

methodology.19 Its approach consists of identifying the metrics and measures needed to

assess the progress being made in each of the goals and objectives of a strategic plan, which

in turn guides the implementation activities toward the desired end state. The balanced

scorecard methodology uses four perspectives: financial, internal processes,

organizational, and end user.

The intent is to carefully select the metrics and measures for each of those

perspectives so that they are in optimal alignment with the chosen strategy, thereby

ensuring that the enterprise will achieve its goals and strategic objectives. Because the

implementation of the strategy stretches over time, it is beneficial to consider metrics and

18
 Army Data Strategy, February 2016, available at

http://ciog6.army.mil/Portals/1/Home/Tabs/Strategy/20160303_Army_Data_Strategy_2016.pdf

19
 Balanced Scorecard Step-by-Step for Government and Nonprofit Agencies, Second Edition, Paul R.

Niven, John Wiley and Sons, Inc., ISBN 978-0-470-18002-0, 2008.

http://ciog6.army.mil/Portals/1/Home/Tabs/Strategy/20160303_Army_Data_Strategy_2016.pdf

2-4

measures that apply before the systems that compose a given solution architecture are in

place, those that must be applied once the system achieves its initial operational capability,

and those that apply when the system enters its full operational capability and for the rest

of its expected life cycle.

D. Perspectives Description and Purpose

As noted above, the balanced scorecard methodology partitions the management of a

strategic plan implementation along four perspectives. Their brief overviews and purposes

are presented below.

1. Financial Perspective

The financial metrics and measures are intended to ensure that the organizations

charged with the implementation of their respective data strategy plans can achieve their

objectives in an effective and efficient manner, which minimizes risks associated with the

typical and unavoidable DoD budget fluctuations. In our case, these metrics and measures

call for the identification of the cost models and activities needed to ensure that the planned

Army DFS Portal is adequately funded.

2. Internal Process Perspective

The internal process metrics and measures are applied to processes that are essential

to achieving the Army VAUTI data strategy. This covers the efficient operation, from the

perspective of the end users, of the processes that fulfill both the mission of information

systems, such as the planned Army DFS portal, and the value proposition of the

organization. The metrics and measures are intended to help the organizations charged with

implementing and running the Army DFS Portal to remain as close as possible to the Army

data strategy. End user satisfaction may require periodic revision of the internal processes

rather than just focusing on the incremental improvement of existing activities. Examples

of areas that merit review and update are Service development and delivery, partnering

with the community, and reporting.

3. Organizational Perspective

The organizational metrics and measures are essentially enablers for the other three

perspectives, and their importance should not be underestimated since they are

foundational to the achievement of the goals and objectives of the Army’s data strategy.

These metrics and measures ameliorate the gaps that may exist between the organizational

infrastructure of employee skills, the information systems, and the organizational climate

(e.g., culture) on the one hand and the skill levels in those areas necessary to achieve the

results that Army organizations participating in the implementation and operation of the

Army DFS Portal have identified.

2-5

4. End User Perspective

The end user metrics and measures aim at identifying the needs and expectations of

the intended end users of the planned Army DFS Portal, i.e., Who are they? What do they

expect from the Army DFS Portal? In addition, these metrics and measures also can guide

the organizations involved in the implementation and operation of the Army DFS Portal to

pinpoint the value added for the end users, which can then be used to justify funding and

the continuation of the Army DFS Portal operations.

E. Correlation of Graph Database Use with Goals and Objectives

within the Army VAUTI Data Strategy

Table 2-1 presents an assessment of how the use of graph database technology can

benefit the Army VAUTI data strategy (“H” denotes a high benefit; “M” denotes a medium

benefit). As noted in previous deliverables, use of a common, and relatively simple format,

such as the one employed for RDF triples, is a very strong facilitator for exposing data in

a manner that is easy to post and retrieve. This in turn supports the goal of making data

visible.

Table 2-1. Assessment of Benefit from Using Graph Database Technology with Regard to

the Army VAUTI Data Strategy Goals and Enabling Objectives

Army Data Strategy
Goals and Enabling Objectives

Graph DB
Benefit

GOALS OBJECTIVES

Make Data Visible (V) Post Data to Shared Spaces H

 Register Metadata Related to Structure and Definition —

Make Data Accessible (A)
Create Shared Spaces and Data Services (Also Information and
IT Services)

H

 Associate Security-Related Metadata —

Make Data Understandable (U) Create Data Models H

 Establish Data Integration H

 Identify Information Requirements Traceability M

Make Data Trusted (T) Identify Authoritative Data Sources —

Create Secured Availability (Data Security and Data Access
Security)

—

Make Data Interoperable (I) Comply with Information Exchange Specifications H

 Establish Master Data Management/Unique Identifiers M

 Establish Community-Based Information Sharing H

 Establish Translation and Mediation H

Similarly, using a technology that lowers the barrier to posting and retrieving data

supports the efficient construction of shared spaces and data services that use that type of

data store. This in turn supports the goal of making data accessible.

2-6

As noted in the preceding sections, a key step in the use of the graph database

technology to support the operations of the planned Army DFS Portal is the identification

of the metadata needed to ensure that the data can be retrieved using appropriate queries.

The harmonization of the metadata is also an enabler for better data integration. This in

turn supports making the data understandable.

Perhaps the goal and objectives best supported by the use of graph database

technology is the one related to data interoperability. Not only would be easier to exchange

data among graph databases that store their records in a representation such as RDF, but

the federation of data resources would be much simpler and could leverage currently

available semantic tools.

F. Recommended Metrics and Measures for the Army DFS Portal

1. Financial Perspective

Table 2-2 shows a set of metrics and measures that could be applied to the

implementation of the planned Army DFS Portal under the financial perspective of the

balanced scorecard methodology.

Table 2-2. Metrics and Measures for the Financial Perspective

Fiscal Metrics and Measures

Metric

Time

line Measure

 Develop a cost model for all materiel

required for the Army DFS Portal

LoB* 100% coverage of essential components for the Army

DFS Portal

 Develop a life-cycle cost model for

the Army DFS Portal equipment

LoB 100% coverage of maintenance costs for the selected

solution architecture of the Army DFS Portal

 Develop cost model for the Army DFS

Portal personnel costs

LoB 100% coverage of costs associated with staffing and

training of personnel required for full operational

capability of the Army DFS Portal

 Obtain funding for the initial

implementation phase of the Army

DFS Portal

LoB 100% coverage of costs for first spiral of the Army

DFS Portal implementation plan

 Obtain funding for completion of the

Army DFS Portal implementation plan

RoB* 100% coverage of costs for successive spirals

comprising the Army DFS Portal implementation plan

 Obtain funding for the Army DFS

Portal life-cycle

RoB 100% of yearly coverage of operational costs during

life-cycle of implemented the Army DFS Portal

solution architecture – to include training of new

personnel unfamiliar with the various technologies

LoB = Left of Boom; RoB = Right of Boom

As alluded earlier, these metrics and measures can be separated into those that apply

before the Army DFS Portal is implemented (left of boom) and those that would ensure its

2-7

operation after it reaches its full operating capability status (right of boom). The utilization

of graph database technology to power the portal in turn supports the Army VAUTI data

strategy, as discussed in the previous section (see Table 2-1 above).

2. Internal Process Perspective

Table 2-3 shows a set of metrics and measures that could be applied to the

implementation of the planned Army DFS Portal under the internal process perspective of

the balanced scorecard methodology.

Table 2-3. Metrics and Measures for the Internal Process Perspective

Internal Process Metrics and Measures

Metric Timeline Measure

 Develop a timeline and schedule for

upgrades applicable to the entire life-

cycle of the Army DFS Portal

LoB* 100% coverage of envisioned system upgrades during

system life-cycle

 Develop a framework for improving

services and delivery of functionality

within the Army DFS Portal

LoB Increase by 30% yearly the quality of service based on end

user feedback

 Reduce by 30% yearly the response time within the Army

DFS Portal

 Identify processes that benefit from

enhanced information visualization

capabilities and establish procedures

for achieving optimal information

visualization within said processes

LoB 100% identification of processes that can benefit from

enhanced information visualization

 25% reduction in processing time in workflows that adopt

enhanced information visualization capabilities

 Monitor the timeline and schedule for

planned upgrades

RoB* 10% or less deviation from the vetted timeline and

schedule for any given period covered by the schedule

 Monitor end user satisfaction to ensure

services are either adequate or

improving

RoB Decrease by 30% yearly the number of negative

evaluations provided by the end users of the Army DFS

Portal

 Monitor work flows that leverage

enhanced information visualization

capabilities

RoB Decrease by 25% or more the processing times in

workflows through the use of information visualization

capabilities

LoB = Left of Boom; RoB = Right of Boom

The utilization of graph database technology to power the portal in turn supports the

Army VAUTI data strategy, as discussed in the previous section (see Table 2-1 above).

3. Organizational Perspective

Table 2-4 shows a set of metrics and measures that could be applied to the

implementation of the planned Army DFS Portal under the organizational perspective of

the balanced scorecard methodology.

2-8

Table 2-4. Metrics and Measures for the Organizational Perspective

Organizational Metrics and Measures

Metric Timeline Measure

 Develop a timeline and schedule for personnel

training applicable to the entire life-cycle of the

Army DFS Portal

LoB* 100% coverage of all personnel training required

for the adequate operation through the entire life

cycle of the Army DFS Portal

 Develop a timeline and schedule for gap analysis

of system component effectiveness applicable to

the entire life-cycle of the Army DFS Portal

LoB 100% coverage of information subsystems

comprising the Army DFS Portal infrastructure

 Develop a timeline and schedule for reviewing

the organizational climate (e.g., potential cultural

barriers) that encompass the entire life-cycle of

the Army DFS Portal

LoB 100% coverage of workflows in the Army DFS

Portal where personnel may be prone to resist

changes

 Monitor compliance with vetted timeline and

schedule for personnel training encompassing

the entire life-cycle of the Army DFS Portal

RoB* 10% or less deviation from the vetted timeline

and schedule for any given period covered by the

schedule

 Monitor compliance with vetted timeline and

schedule for identifying gaps in the system

component effectiveness encompassing the

entire life-cycle of the Army DFS Portal

RoB 10% or less deviation from the vetted timeline

and schedule for any given period covered by the

schedule

 Monitor compliance with vetted timeline and

schedule for identifying cultural barriers and

organizational climate within workflows that

encompass the entire life-cycle of the Army DFS

Portal

RoB 10% or less deviation from the vetted timeline

and schedule for any given period covered by the

schedule

LoB = Left of Boom; RoB = Right of Boom

The utilization of graph database technology to power the portal in turn supports the

Army VAUTI data strategy, as discussed in the previous section (see Table 2-1 above).

4. End User Perspective

Table 2-5 shows a set of metrics and measures that could be applied to the

implementation of the planned Army DFS Portal under the end user perspective of the

balanced scorecard methodology.

2-9

Table 2-5. Metrics and Measures for the End User Perspective

End User Metrics and Measures

Metric Timeline Measure

 Conduct a risk analysis and identify

countermeasures to ensure infrastructure

integrity with respect to cyber-attacks

LoB* 100% coverage of attack surface offered by the

selected solution architecture and the

countermeasures needed to protect the network

and systems infrastructure

 Develop a process to capture end user

feedback

LoB 100% capture and review of end user feedback

with respect to response times, overall quality of

service, ease of use, services offered, etc.

 Develop a process to capture operator

performance

LoB 100% capture and review of how operators

interact with the Army DFS Portal during the

conduct of their work

 Monitor adequacy of the selected

countermeasures regarding their ability to

protect the infrastructure integrity and review

nature and severity of emerging threats

RoB* 10% or less downtime for the Army DFS Portal

due to infrastructure compromise caused by cyber

attacks

 Zero exfiltration incidents of encrypted and

appropriately pseudonymized data

 Monitor end user satisfaction RoB Decrease by 30% yearly the number of negative

evaluations provided by the end users of the Army

DFS Portal

 Monitor the Army DFS Portal operator

proficiency

RoB Decrease by 30% yearly the number instances in

which inadequate service is provided by operators

due to subpar performance

LoB = Left of Boom; RoB = Right of Boom

The utilization of graph database technology to power the portal in turn supports the

Army VAUTI data strategy, as discussed in the previous section (see Table 2-1 above).

3-1

3. Conclusions and Recommendations

A. Conclusions

Based on the analytical work performed during this phase, the IDA team concluded

the following:

 As briefly noted in the previous deliverables, the main risk associated with the

adoption of graph databases when compared to relational data stores in the context

of massive graphs, is their inferior time performance associated with data retrieval

and complex query execution. For interactive applications, any data storage and

retrieval technology that requires more than one or two seconds to deliver the

answer is unlikely to be a strong contender in the solution architecture that supports

those use cases.

 However, some proprietary graph database solutions for “big data” are reaching a

sufficient level of maturity to be competitive with relational data stores in terms of

performance. Specifically, the combination of graph databases and frameworks for

distributed storage and processing, such as Apache Hadoop and Apache Spark,

make it possible to efficiently partition very large datasets to compensate for any

slowdowns caused by the size of the graphs.

 The use of a “semantic layer” (i.e., metadata that characterizes a record expressed

in the form of an RDF triple) can be readily implemented using both RDF

statements and alternative data representations that are not only closely related to

the graph formalism – and, therefore, can be readily converted back and forth – but

can also be directly processed using a programming language (e.g., Prolog).

 The key rationale for using graph databases is mainly to enable the cost-effective

handling of legacy data, bypassing the laborious and expensive extraction,

transformation and loading (ETL) associated with traditional approaches, and said

rationale is supported by all the findings obtained so far.

B. Recommendations

For this stage of the study, the preliminary recommendations are as follows:

 Continue the evaluation of available graph database implementations, both

proprietary and open source, and expand the scope to include other promising

NoSQL choices.

3-2

 Conduct additional comparisons regarding the use of other programming languages

and data representations for the purpose of implementing a “semantic layer” as part

of the graph database solution.

 Explore applicable emerging “big data” solutions with regard to their applicability

in a future implementation of the Army DFS Portal.

A-1

Appendix A

Alternate Representations of Graphs and

Programmatic Manipulation via Prolog

1. Introduction

As noted in the main body of this document, an essential component of the graph

database implementation is the definition and use of all the metadata necessary to ensure

that the information collected is understandable and easily retrievable. Another key facet

of the implementation is the ability to efficiently perform the necessary operations to

update and maintain the data. Although RDF triples are excellent for re-expressing records

that reside in relational data stores, other representations are ideally suited for specific

solutions (e.g., JSON LD serializations for web-based applications) or representations that

lend themselves to programmatic manipulation (e.g., Prolog knowledge bases).

In this appendix we briefly discuss the ability to convert between RDF and JSON LD

serializations and Prolog knowledge bases. It should be noted that commercial solutions

such as Allegro Graph already support the use of Prolog for data manipulation and retrieval

as an alternative to SPARQL queries.

2. Converting RDF to JSON LD and Back

Figure A-1 shows the first 10 records of a notional Person table. As shown therein,

each record contains a unique key, as well as fields for the first name, the last name, the

date of birth, and the key of another instance of Person related via the “knows” predicate.

Figure A-1. Snippet of the Notional Person Table

A-2

Each of those records in the Person table can be readily converted into RDF triples.

Figure A-2 shows the RDF equivalent for the first two records (see Figure A-1 above),

using the Turtle serialization.

Figure A-2. Representation of the Person Records in RDF Using Turtle Serialization

Figure A-3. Example of JSON LD Serialization of RDF Triples

A-3

Figure A-3 shows the corresponding JSON LD serialization of the RDF triples

expressed in Turtle (see Figure A-2), obtained using the open source Java tool rdfconvert.20

The serialization not only captures the key-value pairs for the first name, last name, date

of birth, and the known instance of Person, but it also reflects the namespaces used in the

RDF representation. The rdfconvert tool also supports the conversion of the JSON LD

serializations back into RDF (not shown here).

The rdfconvert tool can take as input a file serialized in any of the following formats:

RDF/XML, N-Quads, N-Triples, Turtle, TriG, TriX, RDF/JSON, JSON-LD, or

BinaryRDF. The output of the rdfconvert tool can be in any of the following serializations:

RDF/XML (the default value), N-Quads, N-Triples, N3, Turtle, TriG, TriX, RDF/JSON,

JSON-LD, and BinaryRDF.

As schematically depicted in Figure A-4, the above demonstration means that records

contained in an RDF triple store can be easily converted and passed to a web application

in the form of a data stream that uses the JSON-LD serialization, and conversely, that data

captured by a web application and transferred as a JSON-LD data stream can be efficiently

converted into a Turtle file before ingestion into the RDF triple store, allowing a solution

architecture to leverage the optimized capabilities of each of the components with

relatively minimal effort.

Figure A-4. Depiction of a Notional Round Trip Using JSON LD and Turtle Serializations

3. Representation of RDF Data Using Prolog Knowledge Bases

The representation of records in the form of RDF triples is very similar to the way in

which Prolog knowledge bases (PKBs) are written. Figure A-5 shows how the RDF triples

20
 https://sourceforge.net/projects/rdfconvert/

A-4

corresponding to the first name field in the Person table (see Figure A-1 above) can be re-

expressed as a PKB.

Figure A-5. A Portion of the Prolog Knowledge Base Corresponding to the RDF Triples

Containing the “fname” Predicate

Similarly the RDF triples that express the association of one instance of Person to

another instance of Person under the predicate “knows” can be re-expressed as a PKB in

the manner shown in Figure A-6.

Figure A-6. A Portion of the Prolog Knowledge Base Corresponding to the RDF Triples

Containing the “knows” Predicate

4. Programmatic Manipulation with Prolog – “Six Degrees of

Separation” Redux

The use of PKBs as an alternate representation of the graphs contained in an RDF

triple store raises the question of whether or not one can improve the data retrieval

A-5

performance of expensive queries by judiciously encoding the statements that make the

PKBs. Specifically, can the performance of queries, such as the ones used in the Six

Degrees of Separation (SDOS) test case (discussed in the second deliverable), be

substantially improved by writing the PKBs in a way that preserves the order implicit in

the structure of the SDOS graph, namely, a chain made of the assertions “person T1 knows

person T2,” “person T2 knows person T3,” and so on? (See Figure A-7).

Figure A-7. Schematic Depiction of the Graph Structure

for the Six Degrees of Separation (SDOS)

If the PKB is built by directly reading the contents of the PersonAssociation table,

which is sorted by the key of the subject Person, the assertions are written as shown in

Figure A-6. In that case after finding that p1010000005 knows p1090000005 the

application has to read potentially millions of assertions before finding the assertion that

links p1090000005 to the next instance of Person.

If, however, the PKB is written so that the assertions that make up the eight links in

each of the subgraphs, as implied by the structure shown in Figure A-7, then once the

subject Person is found, the application needs only to read at most eight additional

assertions to traverse the entire subgraph that begins with that instance of Person (See

Figure A-8).

Figure A-8. Assertions in the PKB Sorted According

to the Structure of the Six Degrees of Separation Graph

A-6

With the PKB written in this fashion one can then execute Prolog queries that find the

instances of Person with fname = ‘TAYLOR’ that are separated from instances of Person

with fname = ‘DORIAN’ by up to six steps (See Figure A-9).

Figure A-9. Prolog Queries for the Six Degrees of Separation Test Case

The execution times using the open source implementation of Prolog SWIPL, and

using a PKB containing eight million assertions with the predicate fname, and a second

PKB containing eight million assertions with the predicate knows are shown in Figure

A-10.

A-7

Figure A-10. Performance Results for the SDOS Test Case

Using Sorted Assertions

These results suggest that the way in which the PKBs are constructed may have a big

impact on the performance of the queries. In particular, the execution times for queries that

require testing three or more steps in each subgraph level off (i.e., the execution time only

differs by about one second between the shortest and the longest query).

Additional exploration of the effects on performance when using Prolog predicates

that have a higher arity is recommended to find out whether this representation of the

graphs contained in an RDF triple store further reduces the data retrieval times.

5. Mixing Prolog and Python

As a declarative programming language Prolog makes the formulation of queries to

retrieve data from graphs relatively simple. For example the queries in Figure A-9 for the

SDOS test case are much simpler than the SQL counterparts needed to retrieve the same

results from the tables Person and PersonAssociation in a relational database such as

MySQL.

On the other hand, although some proprietary implementations of Prolog such as

SICStus21 offer support for database manipulation and GUI development for stand-alone

applications, the manipulation of strings in Prolog is more complicated than in Python.

Fortunately, libraries such as PySWIP, described as “a Python - SWI-Prolog bridge

enabling to query SWI-Prolog in your Python programs,” that allow the possibility of

having Prolog-like capabilities inside a standard Python script.22

21
 https://sicstus.sics.se/

22
 https://github.com/yuce/pyswip

A-8

Figure A-11. Performance Results for the SDOS Test Case

Using the PySWIP Bridge

Although performance degrades somewhat when using PySWIP as opposed to

running the SDOS queries directly in Prolog SWIPL (see Error! Reference source not

ound.Figure A-11), the availability of the rich set of Python string manipulation functions

makes it relatively straightforward to format the results of the queries in a user-friendly

manner (see Figure A-12Error! Reference source not found.).

Figure A-12. Sample of Formatted SDOS Query Results using Python

B-1

Appendix B

Sample Code Used for Testing Conversion of

Legacy Relational Data to RDF Triples

The code examples included in this section are provided primarily to facilitate the

development of assessment tests similar to those described in this document for graph

database manipulation using Prolog.

To eliminate barriers to the reuse of an entire snippet or a portion thereof all the code

examples are released under the MIT license shown below.23 The Institute for Defense

Analyses, however, retains the copyright of all the code contained in this appendix.

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

23
 https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT

B-2

A. Preparation of Prolog Knowledge Bases

The Prolog knowledge bases (PKBs) used in this deliverable were generated out of

the sample data created previously and stored in the tables Person and PersonAssociation

within a MySQL server.

1. Python Scripts to Generate the PKBs

The script presented below generates a PKB for the knows predicate with the

assertions ordered consistent with the structure of the SDOS graph (see Figure A-7). The

output is of the form shown in Figure A-8. The Python script traverses the first million

records in the eight subsets used to create the PersonAssociation table (see deliverable 2

for more details).

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb

startVal = 1000000005
counter = 1

A = []
B = []
Replace the values in the connection string below to reflect your configuration

B-3

con = mdb.connect('localhost', 'myuser', 'myuserpwd', 'mydatabase');

with con:

 for j in range(1000000):

 cur = con.cursor()

---------------- first record ------------------------

print "First Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(startVal)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

 print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- second record ------------------------

print "Second Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

 print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- third record ------------------------

B-4

print "Third Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

 print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- fourth record ------------------------

print "Fourth Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

 print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- fifth record ------------------------

print "Fifth Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

B-5

 print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- sixth record ------------------------

print "Sixth Record"

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)
print sqlStr

 cur.execute(sqlStr)
 row = cur.fetchone()
 subj = int(row[0])
 obj = int(row[1])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- seventh record ------------------------

print "Seventh Record"

sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)

print sqlStr

cur.execute(sqlStr)
row = cur.fetchone()
subj = int(row[0])
obj = int(row[1])

prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

print prologStr

cur.execute(sqlStr)

counter = counter + 1

---------------- eigth record ------------------------

print "Eigth Record"

B-6

 sqlStr = "SELECT subjperID,objperID FROM per08aper08aAssn WHERE subjperID =" + str(obj)

print sqlStr

cur.execute(sqlStr)
row = cur.fetchone()
subj = int(row[0])
obj = int(row[1])

prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

print prologStr

cur.execute(sqlStr)

counter = counter + 1

--

con.commit()

startVal = startVal + 5

con.close()

The previous script can be substantially simplified if the PersonAssociation table is

first sorted as shown in the figure below.

Note that in MySQL one needs to add a new key attribute (e.g., paID) to capture the

desired order of the records in that table. Otherwise, the value in the column subjperID will

be used to sort the records.

B-7

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

#!/usr/bin/python
-*- coding: utf-8 -*-

import MySQLdb as mdb

counter = 1

Replace the values in the connection string below to reflect your configuration

con = mdb.connect('localhost', 'myuser', 'myuserpwd', 'mydatabase');

with con:

 cur = con.cursor()

---------------- retrieve all records ------------------------

 sqlStr = "SELECT * FROM persAssn"
 cur.execute(sqlStr)
 rows = cur.fetchall()

 for row in rows:

 subj = int(row[1])
 obj = int(row[2])

 prologStr = "knows(p" + str(subj) + "," + "p" + str(obj) + ") ."

 print prologStr

B-8

B. Scripts for PySWIP

1. The SDOS Test Case

The Python script shown below executes the Prolog SDOS queries using PySWIP and

then produces formatted output as shown in Figure A-12Error! Reference source not

ound.. The code is not optimized, i.e., code that repeats has not been refactored as a

function or method that can be called subsequently by the other portions of the code.

Copyright ©2017. The Institute for Defense Analyses (IDA).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
 # so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE
BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH,
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.#

Author: Francisco Loaiza, Ph.D., J.D.
Institute for Defense Analyses
Alexandria, Virginia, USA

-*- coding: utf-8 -*-

from pyswip.prolog import Prolog
from pyswip import *
from datetime import datetime

start_time = datetime.now()

X = Variable()
Y = Variable()
B1 = Variable()
B2 = Variable()
B3 = Variable()
B4 = Variable()
B5 = Variable()

prolog = Prolog()

prolog.consult("kb_sdos_1M.pl")

B-9

stop_time = datetime.now()

print "\nTime to load the knowledgebase = " , stop_time - start_time

start_time = datetime.now()

assertz = Functor("assertz")
fname = Functor("fname", 2)
lname = Functor("lname", 2)
dob = Functor("dob", 2)
knows = Functor("knows",2)

print "+--+"

print "| SDOS-1 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

q = Query(knows(X,Y),fname(X,'TAYLOR'),fname(Y,'DORIAN'))

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

print "SDOS-1 query_time = " , stop_time - start_time

start_time = datetime.now()

q = Query(knows(X,B1),knows(B1,Y),fname(X,'TAYLOR'),fname(Y,'DORIAN'))

print "+--+"

print "| SDOS-2 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

B-10

print "SDOS-2 query_time = " , stop_time - start_time

start_time = datetime.now()

q = Query(knows(X,B1),knows(B1,B2),knows(B2,Y),fname(X,'TAYLOR'),fname(Y,'DORIAN'))

print "+--+"

print "| SDOS-3 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

print "SDOS-3 query_time = " , stop_time - start_time

start_time = datetime.now()

q = Query(knows(X,B1),knows(B1,B2),knows(B2,B3),knows(B3,Y),fname(X,'TAYLOR'),fname(Y,'DORIAN'))

print "+--+"

print "| SDOS-4 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

print "SDOS-4 query_time = " , stop_time - start_time

start_time = datetime.now()

q =
Query(knows(X,B1),knows(B1,B2),knows(B2,B3),knows(B3,B4),knows(B4,Y),fname(X,'TAYLOR'),fname(Y,'DORIAN'))

B-11

print "+--+"

print "| SDOS-5 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

print "SDOS-5 query_time = " , stop_time - start_time

start_time = datetime.now()

q =
Query(knows(X,B1),knows(B1,B2),knows(B2,B3),knows(B3,B4),knows(B4,B5),knows(B5,Y),fname(X,'TAYLOR'),fnam
e(Y,'DORIAN'))

print "+--+"

print "| SDOS-6 |"

print "+-------------------+--------------------+"

print "| TaylorID | DorianID |"

print "+-------------------+--------------------+"

while q.nextSolution():
 a = str(X.value)
 b = str(Y.value)
 print "| ",a.ljust(16),"| ",b.ljust(16),"|"
q.closeQuery()

print "+-------------------+--------------------+\n"

stop_time = datetime.now()

print "SDOS-6 query_time = " , stop_time - start_time

R-1

References

Although graph database technologies are young as compared to their relational

database counterpart, a growing secondary literature is readily available. The following are

some of the most recent offerings. The URLs point to Amazon.com where the items can

be purchased.

Graph Databases: New Opportunities for Connected Data 2nd Edition, by Ian Robinson,

Jim Webber, and Emil Eifrem, published by O’Reilly Media; 2 edition (July 9,

2015).

https://www.amazon.com/Graph-Databases-Opportunities-Connected-

Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8

Neo4j in Action 1st Edition, by Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic

Fox, and Jonas Partner, published by Manning Publications; 1 edition (December

21, 2014).

https://www.amazon.com/Neo4j-Action-Aleksa-

Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8

Linked Data: Structured Data on the Web 1st Edition, by David Wood, Marsha Zaidman,

Luke Ruth, and Michael Hausenblas, published by Manning Publications; 1 edition

(January 24, 2014).

https://www.amazon.com/Linked-Data-David-

Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2

Linked Data for Libraries, Archives and Museums: How to Clean, Link and Publish your

Metadata, by Seth van Hooland (Author), Ruben Verborgh, published by Amer

Library Assn Editions (June 25, 2014).

https://www.amazon.com/Linked-Data-Libraries-Archives-

Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-

1

The Great Cloud Migration: Your Roadmap to Cloud Computing, Big Data and Linked

Data, by Michael C. Daconta, published by Outskirts Press (October 11, 2013).

https://www.amazon.com/Great-Cloud-Migration-Roadmap-

Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=

1-1

Information as Product, by Michael C. Daconta, published by Outskirts Press (October

21, 2007).

https://www.amazon.com/Information-as-Product-Michael-

Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2

The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge

Management 1st Edition, by Michael C. Daconta (Author), Leo J. Obrst (Author),

https://www.amazon.com/Graph-Databases-Opportunities-Connected-Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Graph-Databases-Opportunities-Connected-Data/dp/1491930896/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Neo4j-Action-Aleksa-Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Neo4j-Action-Aleksa-Vukotic/dp/1617290769/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/Linked-Data-David-Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2
https://www.amazon.com/Linked-Data-David-Wood/dp/1617290394/ref=sr_1_2?s=books&ie=UTF8&qid=1474990762&sr=1-2
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Linked-Data-Libraries-Archives-Museums/dp/0838912516/ref=sr_1_1?s=books&ie=UTF8&qid=1474991823&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Great-Cloud-Migration-Roadmap-Computing/dp/147872255X/ref=sr_1_1?s=books&ie=UTF8&qid=1474992107&sr=1-1
https://www.amazon.com/Information-as-Product-Michael-Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2
https://www.amazon.com/Information-as-Product-Michael-Daconta/dp/1432716549/ref=sr_1_2?s=books&ie=UTF8&qid=1474992167&sr=1-2

R-2

Kevin T. Smith, published by Wiley; 1 edition (May 30, 2003).

https://www.amazon.com/Semantic-Web-Services-Knowledge-

Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr

=1-5

Joe Celko’s Complete Guide to NoSQL: What Every SQL Professional Needs to Know

about Non-Relational Databases 1st Edition, by Joe Celko, published by Morgan

Kaufmann; 1 edition (October 7, 2013).

https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-

ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1

https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Semantic-Web-Services-Knowledge-Management/dp/0471432571/ref=sr_1_5?s=books&ie=UTF8&qid=1474992283&sr=1-5
https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1
https://www.amazon.com/Celkos-Complete-Guide-NoSQL-Non-Relational-ebook/dp/B00G4N7HPS/ref=dp_kinw_strp_1

AA-1

Acronyms and Abbreviations

AI artificial intelligence

API Application Program Interface

AQL ArangoDB Query Language

AWS Amazon Web Services

CDS Cross-domain solution

CRUD Create, Retrieve, Update, Delete

CSV Comma Separated Values

DDL data definition language

DFS Dynamic Force Structure

DML data manipulation language

DoD Department of Defense

DSE DataStax Enterprise

ETL Extraction, Transformation and Loading

GFM DI Global Force Management Data Initiative

GUI Graphic User Interface

IDA Institute for Defense Analyses

IRC Internet Relay Chat

JVM Java virtual machine

LINQ Language Integrated Query

MQL Metaweb Query Language

MTO&E Modified Table of Organization and Equipment

NoSQL Not only Structured Query Language

OWL Web Ontology Language

AA-2

PII personally identifiable information

PKB Prolog Knowledge Base

RDF Resource Description Framework

ReST Representational State Transfer

SaaS software as a service

SPARQL A recursive acronym for SPARQL Protocol and RDF Query

Language

SQL Structured Query Language

TB Terabyte

TDA Table of Distributions and Allowances

TSL Trinity Specification Language

XML Extensible Markup Language

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

29-12-17 Non-Standard

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Assessment of Graph Databases as a Viable Materiel Solution for the Army’s Dynamic

Force Structure (DFS) Portal Implementation: Part 3, Risks, Mitigation Approach, and

Roadmap

HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Francisco L. Loaiza-Lemos, Russell J. Smith BC-5-4277

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

D-8852

H 2017-000092

Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

CIO/G-6 (SAIS-AOD) Mr. Bruce Haberkamp

Army CIO/G-6 (SAIS-AOD)

5850 23rd Street, Bldg. 220, Ft. Belvoir, Virginia 20060-5832
11. SPONSOR’S / MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Project Leader: Francisco L. Loaiza-Lemos

14. ABSTRACT

This document identifies technical risks together with suitable mitigation approaches associated with the use of graph database

implementations in the planned Army DFS Portal. The document also describes possible technology insertion milestones that may

be adopted to enhance the effectiveness of graph database adoption. Rapid prototyping techniques have been applied, as part of the

continuing evaluation of alternatives, to stress the implementations of the graph databases chosen for the study. Data collected during

those activities will be used to continue maturing the decision process needed to determine the best-of-breed options. The assessments

leverage the metrics elaborated in previous reports provided to the sponsor.

15. SUBJECT TERMS

Graph databases, Resource Description Framework (RDF), RDF triples store, JavaScript Object Notation (JSON), JSON Linked

Data (JSON LD), Prolog, data lake, data swamp, data governance, data quality, risk management framework, risk mitigation,

cybersecurity, balanced scorecard methodology, National Institute of Standards and Technology (NIST), NIST Special Publication

800-series reports.

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

56

19a. NAME OF RESPONSIBLE PERSON

Mr. Bruce Haberkamp

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area Code)

 703-545-1464 Unclassified Unclassified Unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

